DOI QR코드

DOI QR Code

In vitro activity comparison of Erm proteins from Firmicutes and Actinobacteria

Firmicutes와 Actinobacteria에 속하는 세균들의 Erm 단백질 in vitro 활성 비교

  • Jin, Hyung Jong (Department of Bioscience and Biotechnology, College of Convergence Science, The University of Suwon)
  • 진형종 (수원대학교 융합과학대학 생명공학과)
  • Received : 2016.07.27
  • Accepted : 2016.09.06
  • Published : 2016.09.30

Abstract

Erm proteins methylate the specific adenine residue ($A_{2058}$, E. coli numbering) on 23S rRNA to confer the $MLS_B$ (macrolidelincosamide-streptogramin B) antibiotic resistance on a variety of microorganisms ranging from antibiotic producers to pathogens. When phylogenetic tree is constructed, two main clusters come out forming each cluster of Actinobacteria and Firmicutes. Two representative Erm proteins from each cluster were selected and their in vitro methylation activities were compared. ErmS and ErmE from Actinobacteria cluster exhibited much higher activities than ErmB and ErmC' from Firmicutes: 9 fold difference when ErmC' and ErmE were compared and 13 fold between ErmS and ErmB. Most of the difference was observed and presumed to be caused by N-terminal and C-terminal extra region from ErmS and ErmE, respectively because NT59TE in which N-terminal end 59 amino acids was truncated from wild type ErmS exhibited only 22.5% of wild type ErmS activity. Meanwhile, even NT59TE showed three and 2.2 times more activity when it was compared to ErmB and C, respectively, suggesting core region from antibiotic producers contains extra structure enabling higher activity. This is suggested to be possible through the extra region of 197RWS199 (from both ErmS and ErmE), 261GVGGSLY267 (from ErmS), and 261GVGGNIQ267 (from ErmE) and 291SVV293 (from ErmS) and 291GAV293 (from ErmE) by multiple sequence alignment.

Erm 단백질은 미생물의 23S rRNA의 특정 nucleotide ($A_{2058}$)에 methylation 시킴으로써 $MLS_B$ (macrolide-lincosamide-streptogramin B) 항생제에 대하여 내성을 나타내는 항생제 내성인자 단백질이다. 이 단백질들을 계통수분석을 하였을 때 두 개의 주된 집단 즉 항생제 생성균과 병원균으로 각각 구성된 Actinobacteria와 Firmicutes에서 유래된 단백질로 구분이 된다. 두 집단을 각각 대표하는 2개의 단백질을(항생제 생성균 유래 ErmS와 ErmE, 병원균 유래 ErmC'와 ErmB) 선택하여 그 활성을 비교하였다. 전체적으로 항생제 생성균에서 비롯된 Erm 단백질이 병원균에서 비롯된 단백질에 비해 높은 활성을 보였다: ErmC'와 ErmE 비교시 9배, ErmB와 ErmS 비교시 13배의 차이가 남. ErmS에서 59개의 아미노산이 제거된 NT59TE 단백질의 활성이 야생형 보다 22.5% 정도에 머물렀기 때문에 이러한 활성의 현격한 차이는 ErmS에서는 N-terminal에 붙어있는 가외의 아미노산에 의한 것으로 관찰되었고 ErmE에서는 C-terminal의 가외의 아미노산에 의한 것으로 추정되었다. 그러나 NT59TE가 ErmC'와 ErmB에 비하여 2.2, 3배의 높은 활성을 보이는 것으로 관찰되어 단백질의 핵심부위에서도 높은 활성을 도와주는 부위가 있음을 알 수 있다. 다중 아미노산 배열 정렬로부터 이 부위는 197RWS199 (ErmS와 ErmE 모두로부터 유래), 261GVGGSLY267 (ErmS로부터 유래) 그리고 261GVGGNIQ267 (ErmE로부터 유래)와 291SVV293 (ErmS로부터 유래) 그리고 291GAV293 (ErmE로부터 유래)으로 추정되었다.

Keywords

References

  1. Anastasi, E., Giguere, S., Berghaus, L.J., Hondalus, M.K., Willingham-Lane, J.M., MacArthur, I., Cohen, N.D., Roberts, M.C., and Vazquez-Boland, J.A. 2015. Novel transferable erm(46) determinant responsible for emerging macrolide resistance in Rhodococcus equi. J. Antimicrob. Chemother. 70, 3184-3190.
  2. Arthur, M., Brisson-Noel, A., and Courvalin, P. 1987. Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses. J. Antimicrob. Chemother. 20, 783-802. https://doi.org/10.1093/jac/20.6.783
  3. Baltz, R.H. and Seno, E.T. 1988. Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu. Rev. Microbiol. 42, 547-574. https://doi.org/10.1146/annurev.mi.42.100188.002555
  4. Bate, N., Butler, A.R., Gandecha, A.R., and Cundliffe, E. 1999. Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae. Chem. Biol. 6, 617-624. https://doi.org/10.1016/S1074-5521(99)80113-6
  5. Bussiere, D.E., Muchmore, S.W., Dealwis, C.G., Schluckebier, G., Nienaber, V.L., Edalji, R.P., Walter, K.A., Ladror, U.S., Holzman, T.F., and Abad-Zapatero, C. 1998. Crystal structure of ErmC′, an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37, 7103-7112. https://doi.org/10.1021/bi973113c
  6. Cundliffe, E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207-233. https://doi.org/10.1146/annurev.mi.43.100189.001231
  7. Jin, H.J. and Yang, Y.D. 2002. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr. Purif. 25, 149-159. https://doi.org/10.1006/prep.2002.1621
  8. Kovalic, D., Giannattasio, R.B., Jin, H.J., and Weisblum, B. 1994. 23S rRNA domain V, a fragment that can be specifically methylated in vitro by the ErmSF (TlrA) methyltransferase. J. Bacteriol. 176, 6992-6998. https://doi.org/10.1128/jb.176.22.6992-6998.1994
  9. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  10. Lee, H.J. and Jin, H.J. 2004. Deletion of N-terminal end region of ErmSF leads to an amino acid having important role in methyl transfer reaction. Korean J. Microbiol. 40, 257-262.
  11. Monod, M., Denoya, C., and Dubnau, D. 1986. Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. J. Bacteriol. 167, 138-147. https://doi.org/10.1128/jb.167.1.138-147.1986
  12. O'Farrell, H.C., Scarsdale, J.N., and Rife, J.P. 2004. Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. J. Mol. Biol. 339, 337-353. https://doi.org/10.1016/j.jmb.2004.02.068
  13. Park, A.K., Kim, H., and Jin, H.J. 2010. Phylogenetic analysis of rRNA methyltransferases, Erm and KsgA, as related to antibiotic resistance. FEMS Microbiol. Lett. 309, 151-162.
  14. Rao, S.T. and Rossmann, M.G. 1973. Comparison of super-secondary structures in proteins. J. Mol. Biol. 76, 241-256. https://doi.org/10.1016/0022-2836(73)90388-4
  15. Robert, X. and Gouet, P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320-324. https://doi.org/10.1093/nar/gku316
  16. Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J., and Seppala, H. 1999. Nomenclature for macrolide and macrolidelincosamide-streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830.
  17. Schluckebier, G., Zhong, P., Stewart, K.D., Kavanaugh, T.J., and Abad-Zapatero, C. 1999. The 2.2 A structure of the rRNA methyltransferase ErmC′ and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J. Mol. Biol. 289, 277-291. https://doi.org/10.1006/jmbi.1999.2788
  18. Schwendener, S. and Perreten, V. 2012. New MLSB resistance gene erm(43) in Staphylococcus lentus. Antimicrob. Agents Chemother. 56, 4746-4752. https://doi.org/10.1128/AAC.00627-12
  19. Studier, F.W. and Moffatt, B.A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130. https://doi.org/10.1016/0022-2836(86)90385-2
  20. Trieu-Cuot, P., Poyart-Salmeron, C., Carlier, C., and Courvalin P. 1990. Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545. Nucleic Acids Res. 18, 3660. https://doi.org/10.1093/nar/18.12.3660
  21. Uchiyama, H. and Weisblum, B. 1985. N-Methyl transferase of Streptomyces erythraeus that confers resistance to the macrolidelincosamide-streptogramin B antibiotics: amino acid sequence and its homology to cognate R-factor enzymes from pathogenic bacilli and cocci. Gene 38, 103-110. https://doi.org/10.1016/0378-1119(85)90208-2
  22. Vester, B. and Douthwaite, S. 1994. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. J. Bacteriol. 176, 6999-7004. https://doi.org/10.1128/jb.176.22.6999-7004.1994
  23. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585. https://doi.org/10.1128/AAC.39.3.577
  24. Wipf, J.R., Schwendener, S., Nielsen, J.B., Westh, H., and Perreten, V. 2015. The new macrolide-lincosamide-streptogramin B resistance gene erm(45) is located within a genomic island in Staphylococcus fleurettii. Antimicrob. Agents Chemother. 59, 3578-3581. https://doi.org/10.1128/AAC.00369-15
  25. Wipf, J.R., Schwendener, S., and Perreten, V. 2014. The novel macrolide-Lincosamide-Streptogramin B resistance gene erm(44) is associated with a prophage in Staphylococcus xylosus. Antimicrob. Agents Chemother. 58, 6133-6138. https://doi.org/10.1128/AAC.02949-14
  26. Yu, L., Petros, A.M., Schnuchel, A., Zhong, P., Severin, J.M., Walter, K., Holzman, T.F., and Fesik, S.W. 1997. Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolidelincosamide-streptogramin antibiotic resistance. Nat. Struct. Biol. 4, 483-489. https://doi.org/10.1038/nsb0697-483
  27. Zalacain, M. and Cundliffe, E. 1989. Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. J Bacteriol. 171, 4254-4260. https://doi.org/10.1128/jb.171.8.4254-4260.1989