DOI QR코드

DOI QR Code

Translocation of Polychlorinated Biphenyls in Carrot-Soil Systems

Polychlorinated Biphenyl의 작물-토양간 흡수 이행성

  • Lim, Do-Hyung (Department of Bioresources and Food Science, Konkuk University) ;
  • Lim, Da-Som (Department of Bioresources and Food Science, Konkuk University) ;
  • Keum, Young-Soo (Department of Bioresources and Food Science, Konkuk University)
  • 임도형 (건국대학교 생명자원식품공학과) ;
  • 임다솜 (건국대학교 생명자원식품공학과) ;
  • 금영수 (건국대학교 생명자원식품공학과)
  • Received : 2016.06.23
  • Accepted : 2016.08.02
  • Published : 2016.09.30

Abstract

Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants, found in the many environments. PCBs exerts various toxicological effects, including endocrine-disrupting activity. Most researches with these toxicants performed with soil matrix with mixtures of congeners, namely Aroclor, while the biological activities have been tested with animals. However, studies with pure congeners are limited. In this study, 5 congeners were synthesized and their fates (bioaccumulation, degradation, kinetics) were studied in carrot-soil system. The soil half-lives of biphenyl, PCB-1, PCB-3, PCB-77, and PCB-126 were 20.2, 16.0, 11.6, 46.5, 198.0 days, respectively. In general, the longer half-lives were observed with the higher hydrophoicity of PCBs. Times, required for maxium accumulation of PCBs in carrot (Tmax) were 10-20 days for most congeners and the concentrations were 0.4-2.6 mg/kg. The concentrations of PCBs in carrot were kept as constant after Tmax, except PCB-126. The concentration ratio between carrot and soil after 90 days of treatment were 1.7, 8.1, 1.9, 1.8, and 5.9 for biphenyl, PCB-1, PCB-3, PCB-77, and PCB-126. Because of the increase of biomass, the total residual amount of PCBs in carrots however, increased till the end of experiment. The portions of PCB-126 in carrot were 1.1% of the soil residues at 90 days after planting.

Polychlorinated biphenyls는 잔류성 환경 오염물질로서 내생호르몬 대사 교란 효과를 포함한 다양한 생리독성을 나타내는 것으로 알려져 있다. 해당 물질의 환경 동태에 관한 연구는 토양 중, 분해소실과 관련된 연구가 주로 수행되었으며, 한편 생물과 관련 연구는 동물 중, 대사 및 독성 작용에 대한 연구를 대상으로 실시되어 왔다. 이와 같은 연구는 주로 Aroclor 등, 혼합물을 위주로 진행되었으며, 따라서 개별 이성질체에 관한 연구는 매우 제한적으로 수행되었다. 본 연구에서는 수용해도 및 염소 치환체의 위치가 상이한 polychlorinated biphenyl 이성질체 5종을 합성하여, 토양 중 분포 및 당근으로의 이행에 관련한 분해-소실 및 생물농축 과정에 대한 연구를 수행하였다. Biphenyl 및 polychlorinated biphenyl 이성질체의 토양 중 반감기는 biphenyl, PCB-1, PCB3, PCB-77 및 PCB-126에 대하여 각 20.2, 16.0, 11.6, 46.5 및 198.0일이었으며, 지용성이 강한 이성질체일수록, 반감기가 길게 나타났다. 한편 당근 중 biphenyl, 및 polychlorinated biphenyls 농도는 PCB-126을 제외한 시료에서 식재 후, 10-20일 내외에 최고 농도에 도달하여, 0.4-2.6 mg/kg의 농도가 식재 후 90일까지 유지되었으며 당근-토양간 PCB의 농도비는 90일 경과 시료의 경우 biphenyl, PCB-1, PCB-3, PCB-77, 및 PCB-126에 대하여 각각 1.7, 8.1, 1.9, 1.8, 5.9로 나타났다. 일정 경과 시간 후 농도비가 상기와 같이 유지되는 현상은 당근의 비대생장에 따른 희석효과에 따른 것으로 사료된다. 한편 당근에 흡수된 PCBs의 총량은 재배기간 중 지속적으로 상승하여 PCB-126의 경우, 90일 경과시 토양 잔류량 대비, 1.1%가 당근에서 검출되었다.

Keywords

References

  1. Ayris, S. and S. Harrad (1999) The fate and persistence of polychlorinated biphenyls in soil. J. Environ. Monit. 1:395-401. https://doi.org/10.1039/a903017d
  2. Chu, W. K., M. H. Wong and Zhang, J. (2006) Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.: I. Whole plant study. Environ. Geochem. Health 28:159-168. https://doi.org/10.1007/s10653-005-9027-8
  3. Devillers, J., S. Bintein and D. Domine (1996) Comparison of BCF models based on logP. Chemosphere 33:1047-1065. https://doi.org/10.1016/0045-6535(96)00246-9
  4. Doick, K. J., E. Klingelmann, P. Burauel, K. C. Jones and K. T. Semple (2005a) Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil. Environ. Sci. Technol. 39:3663-3670. https://doi.org/10.1021/es048181i
  5. Doick, K. J., P. Burauel, K. C. Jones and K. T. Semple (2005b) Distribution of aged $^{14}C$-PCB and $^{14}C$-PAH residues in particle-size and humic fractions of an agricultural soil. Environ. Sci. Technol. 39:6575-6583. https://doi.org/10.1021/es050523c
  6. George, C. J., G. F. Bennet, D. Simoneaux and W. J. George (1988) Polychlorinated biphenyls a toxicological review. J. Hazard. Mater. 18:113-144. https://doi.org/10.1016/0304-3894(88)85018-0
  7. Giesey, J. P. and K. Kannan (1998) Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs): implications for risk assessment. Crit. Rev. Toxicol. 28:511-569. https://doi.org/10.1080/10408449891344263
  8. Grimm, F. A., D. Hu, I. Kania-Korwel, H. J. Lehmler, G. Ludewig, K. C. Hornbuckle, M. W. Duffel, A. Bergman and L. W. Robertson (2015) Metabolism and metabolites of polychlorinated biphenyls (PCBs). Crit. Rev. Toxicol. 45:245-272. https://doi.org/10.3109/10408444.2014.999365
  9. Iwata, Y. and F. A. Gunther (1976) Translocation of the polychlorinated biphenyl Aroclor 1254 from soil into carrots under field conditions. Arch. Environ. Contam. Toxicol. 4:44-59. https://doi.org/10.1007/BF02221014
  10. Javorska, H., P. Tlustos and R. Kaliszova (2011) Distribution of polychlorinated biphenyl congeners in root vegetables. Pol. J. Environ. Stud. 20:93-99.
  11. Li, H., L. Liu, C. Lin and S. Wang (2011) Plant uptake and in-soil degradation of PCB-5 under varying cropping conditions. Chemosphere 84:943-949. https://doi.org/10.1016/j.chemosphere.2011.06.007
  12. Liu, J. and J. L. Schnoor (2008) Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere 73:1608-1616. https://doi.org/10.1016/j.chemosphere.2008.08.009
  13. Low, J. E., A. M. L. Whitfield, A. Rutter and B. A. Zeeb (2009) Effect of plant age on PCB accumulation by Cucurbita pepo ssp. pepo. J. Environ. Qual. 39:245-250.
  14. Kim, C. -S., D. -H. Lim and Y. -S. Keum (2016) Biodegradation pathways of polychlorinated biphenyls by soil fungus Aspergillus niger. Kor. J. Pestic. Sci. 20:7-13. https://doi.org/10.7585/kjps.2016.20.1.7
  15. Nizzetto, L., C. Pastore, X. Liu, P. Camporini, D. Stroppiana, B. Herbert, M. Boschetti, G. Zhang, P. A. Brivio, K. C. Jones and A. D. Guardo (2008) Accumulation parameters and seasonal trends for PCBs in temperate and boreal forest plant species. Environ. Sci. Technol. 42:5911-5916 https://doi.org/10.1021/es800217m
  16. Rezek, J, T. Macek, M. Mackova and J. Triska (2007) Plant metabolites of polychlorinated biphenyls in hairy root cultureof black nightshade Solanum nigrum SNC-9O. Chemosphere 69:1221-1227. https://doi.org/10.1016/j.chemosphere.2007.05.090
  17. Ross, G. (2004) The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicol. Environ. Safe. 59:275-291. https://doi.org/10.1016/j.ecoenv.2004.06.003
  18. Sabljic, A. and Y. Nakagawa (2014) Biodegradation and quantitative structure-activity relationship (QSAR). In Chen, W., Sabljic, A., Cryer, S.A., Kookana, R.S. (eds) ACS symposium series vol 1174 Non-first order degradation and time-dependent sorption of organic chemicals in soil. Washington DC, American Chemical Society, pp. 57-84.
  19. Seth, R., D. Mackay and J. Muncke (1999) Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environ. Sci. Technol. 33:2390-2394. https://doi.org/10.1021/es980893j
  20. Skoglund, R., K. Stange and D. L. Swackhamer (1996) A kinetics model for predicting the accumulation of PCBs in phytoplankton. Environ. Sci. Technol. 30:2113-2120. https://doi.org/10.1021/es950206d
  21. US EPA (1996) Product properties test guidelines OPPTS 830.7570. Partition coefficient (n-octanol/water) estimation by liquid chromatography.
  22. Waliszewski, S. M., O. Carvajal, S. Gomez-Arroyo, O. Amador-Munoz, R. Villalobos-Pietrini, P. M. Hayward-Jones and R. Valencia-Quintana (2008) DDT and HCH isomer levels in soils, carrot root and carrot leaf samples. Bull. Environ. Contam Toxicol. 81:343-347. https://doi.org/10.1007/s00128-008-9484-8
  23. Weber, J. B. and E. Mrozek (1979) Polychlorinated biphenyls: phytotoxicity, absorption and translocation by plants, and inactivation by activated carbon. Bull. Environ. Contam. Toxicol. 23:412-417. https://doi.org/10.1007/BF01769980
  24. Whitfield, A. M. L., B. A. Zeeb, A. Rutter and K. J. Reimer (2007) In situ phytoextraction of polychlorinated biphenyl-(PCB)contaminated soil. Sci. Total Environ. 374:1-12. https://doi.org/10.1016/j.scitotenv.2006.11.052
  25. Witczak, A. and H. Abdel-Gawad (2012) Comparison of organochlorine pesticides and polychlorinated biphenyls residues in vegetables, grain and soil from organic and conventional farming in Poland. J. Environ. Sci. Health B 47:343-353. https://doi.org/10.1080/03601234.2012.646173
  26. Zeeb, B. A., J. S. Amphlett, A. Rutter and K. J. Reimer (2006) Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil. Int. J. Phytoremediation 8:199-221. https://doi.org/10.1080/15226510600846749

Cited by

  1. Translocation of Residual Procymidone from Soil to Lettuce vol.21, pp.3, 2017, https://doi.org/10.7585/kjps.2017.21.3.246
  2. Effects of Organic Fertilizers on the Translocation of Polychlorinated Biphenyls to Crop Plants vol.21, pp.4, 2017, https://doi.org/10.7585/kjps.2017.21.4.355
  3. Translocation of Residual Azoxystrobin from Soil to Korean Cabbage vol.21, pp.4, 2017, https://doi.org/10.7585/kjps.2017.21.4.427
  4. Residual Level of Chlorpyrifos in Lettuces Grown on Chlorpyrifos-Treated Soils vol.8, pp.12, 2018, https://doi.org/10.3390/app8122343
  5. Translocation of chlorpyrifos residue from soil to Korean cabbage vol.61, pp.2, 2016, https://doi.org/10.1007/s13765-017-0341-5