DOI QR코드

DOI QR Code

큰실말(Cladosiphon novae-caledoniae Kylin) 부산물의 화장품소재 특성

Cosmetic Effects of Dietary Fiber from Mozuku, Cladosiphon novae-caledoniae Kylin

  • 김인혜 (신라대학교 의생명과학대학 제약공학과) ;
  • 이재화 (신라대학교 의생명과학대학 제약공학과)
  • Kim, In Hae (Department of Pharmaceutical Engineering, College of Medical & Life Science, Silla University) ;
  • Lee, Jae Hwa (Department of Pharmaceutical Engineering, College of Medical & Life Science, Silla University)
  • 투고 : 2016.08.11
  • 심사 : 2016.09.22
  • 발행 : 2016.09.30

초록

큰실말(Cladosiphon novae-caledoniae kylin, C. novae-caledoniae kylin) 부산물을 이용하여 화장품 소재로써 가능성을 조사하고자, 항산화 효과(DPPH 자유 라디칼 소거 활성), 항균(anti-microbial activity), 미백(tyrosinase inhibition assay), 주름개선(elastase inhibition assay) 및 B16F10 mouse melanoma cell (MTT assay)을 이용한 세포 생존률을 측정하였다. 큰실말 추출물 원물(MC)과 불용성(MI)은 Staphyloccus aureus (S. aureus)와 항생제내성균주인 MRSA에 대하여 활성을 나타내었지만 항곰팡이 활성은 나타내지 않았다. 큰실말 추출물 수용성(MS)은 tyrosine에 대한 tyrosinase 저해효과가 49%로 표준물질인 arbutin 보다 미백효과가 우수하였지만 주름개선효과는 비교적 낮은 활성을 나타내었다. DPPH 라디칼 소거능력은 $500{\mu}g/mL$에서 89%로 나타내었다. 따라서 본 연구인 큰실말 추출물은 화장품 미백소재로써 좋은 후보군임을 확인할 수 있었다.

To investigate the effect of dietary fiber from mozuku, Cladosiphon novae-caledoniae kylin (C. novae-caledoniae kylin) on the skin care, we measured anti-oxidant activity, anti-microbial activities, tyrosinase activity inhibition and elastic activity. B16F10 melanoma cell (MTT assay) were used to measure cell viability. MC and MI exhibited in vitro antibacterial activity against Staphyloccus aureus (S. aureus) and MRSA without antifungal activity. Mozuku extract (MS) showed excellent tyrosinase inhibition effect compared to arbutin as a positive control (to 49% for tyrosine). The wrinkle-improving effect was relatively low. However, wrinkle-improving effect was relatively low. DPPH free radical scavenging activity was 89% in a concentrations at $500{\mu}g/mL$. These results indicate that the mozuku extracts may be an effective cosmetic ingredient for skin whitening.

키워드

참고문헌

  1. S. J. Lee, W. H. Ha, H. J. Choi, S. Y. Cho, and J. W. Choi, Separation and purification of antihypertensive substances from edible seaweeds, Kor. J. Fish Aquat. Sci., 43(5), 421 (2010). https://doi.org/10.5657/kfas.2010.43.5.421
  2. D. S. Kim, D. S. Lee, D. M. Cho, H. R. Kim, and J. H. Pyeun, Trace components and functional saccharides in marine algae, Korean J. Fish. Aquat. Sci., 28(3), 270 (1995).
  3. A. Fortun, A. Khalil, D. Gagne, N. Douziech, C. Kuntz, and D. Dupuis, Monocytes influence the fate of T cells challenged with oxidised low density lipoproteins towards apoptosis or MHC-restricted proliferation, Atherosclerosis, 156(1), 11 (2001). https://doi.org/10.1016/S0021-9150(00)00575-X
  4. S. Mauray, E. Raucourt, J. C. Talbot, J. Dachary-Prigent, M. Jozefowicz, and A. M. Fisher, Mechanism of factor IXa inhibition by antithrombin in the presence of unfractionated and low molecular weight heparins and fucoidan, Biochim. Biophy. Acta, 1387(1), 184 (1998). https://doi.org/10.1016/S0167-4838(98)00120-4
  5. A. Saito, M. Yoneda, S. Yokohama, M. Okada, M. Haneda, and K. Nakamura, Fucoidan prevents concanavalian A-induced liver injury through induction of endogenous 1L-10 in mice, Hepatol. Res., 35(3), 190 (2006). https://doi.org/10.1016/j.hepres.2006.03.012
  6. K. H. Park, E. H. Cho, N. C. Kim, and H. J. Chae, Production of fucoidan using marine algae, Korean J. Biotechnol. Bioeng., 25(3), 223 (2010).
  7. D. J. Kwon, S. T. Lim, Y. J. Chung, S. H. Park, and D. K. Kweon, Comprehension and practical use of fucoidan extracted from brown seaweeds, Food Sci. Ind., 39(1), 73 (2006).
  8. L. Chevolot, A. Foucault, F. Chaubet, N. Kervarec, C. Sinquin, A. M. Fisher, and C. Boisson-vidal, Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity, Carbohydr. Res., 319(4), 154 (1999). https://doi.org/10.1016/S0008-6215(99)00127-5
  9. A. O. Chizhov, A. Della, H. R. Morris, S. M. Haslam, R. A. McDowell, A. S. Shashkov, N. E. Nifant'ev, E. A. Khatuntseva, and A. I. Usov, A study of fucoidan from the brown seaweed Chorda filum, Carbohydr. Res., 320(1), 108 (1999). https://doi.org/10.1016/S0008-6215(99)00148-2
  10. K. Dobashi, T. Nishino, M. Fufihara, and T. Nagumo, Isolation and preliminary characterization of fucose containing sulfated polysaccharide with blood anticoagulant activity from the brown seaweed, Carbohydr. Res., 194(1), 315 (1989). https://doi.org/10.1016/0008-6215(89)85032-3
  11. M. Pereira, B. Mulloy, and P. Mourao, Structure and anticoagulant activity of sulfated fucans, J. Biol. Chem., 274(12), 7656 (1999). https://doi.org/10.1074/jbc.274.12.7656
  12. T. Nishino, Y. Aizu, and T. Nagumo, The relationship between the molecular weight and the anticoagulant activity of two types of fucan sulfates from the brown seaweed Ecklonia kurome, Agri. Biol. Chem., 55(3), 791 (1991). https://doi.org/10.1271/bbb1961.55.791
  13. J. G. Koo, Structural characterization of purified fucoidan from Laminaria religiosa, sporophylls of Undaria pinnatifida, Hizikia fusiforme and Sargassum fulvellum in Korea, Kor. J. Fish Soc., 30(1), 128 (1997).
  14. S. H. Cha, J. K. Lee, Y. S. Kim, D. G. Kim, J. C. Moon, and K. P. Park, Proferties of fucoidan as raw materials of water-holding cream and cosmetics, Korean Chem. Eng. Res., 48(1), 27 (2010).
  15. H. Maruyama, H. Tamauchi, M. Hashimoto, and T. Nakano, Supperssion of Th2 immune responses by mekabu fucoidan from Undaria pinnatifida sporophylls, Int. Arch. Allergy Immunol., 137(4), 289 (2005). https://doi.org/10.1159/000086422
  16. E. Furusawa and S. Furusawa, Anticancer potential of viva-natural, a dietary seaweed extract, on lewis lung carcinoma in comparison with chemical immunomodulators and on cyclosporine-accelerated AKR leukemia, Oncology, 46(5), 343 (1989). https://doi.org/10.1159/000226746
  17. H. Itoh, H. Noda, H. Amano, C. Zhuaug, T. Mizuno, and H. Ito, Antitumar activity and immunological properties of marine algal polysaccharide, especially fucoidan prepared form Sargassum thunbergii of phaeophyceae, Anticancer Res., 13(6A), 2045 (1993).
  18. S. Koyanagi, N. Tanigawa, H. Nakagawa, S. Soeda, and H. Shimeno, Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities, Biochem. Pharmacol., 65(2), 173 (2003). https://doi.org/10.1016/S0006-2952(02)01478-8
  19. A. Cumashi, N. Ushakova, M. Preobrazhenskaya, A. D'Incecco, A. Piccoli, L. Totani, N. Tinari, G. Morozevich, A. Berman, M. Bilan, A. I. Usov, N. Ustyuzhanina, A. Grachev, C. Sanderson, M. Kelly, G. Rabinovich, S. Iacobelli, and N. E. Nifantiev, A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiol., 17(5), 541 (2007). https://doi.org/10.1093/glycob/cwm014
  20. R. Cooper, C. Dragar, K. Elliot, J. Fitton, J. Godwin, and K. Thompso, GFS, a preparation of Tasmanian Undaria pinnatifida associated with healing and inhibition of reactivation of Herpes, BMC Complement. Altern. Med., 2(1), 1 (2002). https://doi.org/10.1186/1472-6882-2-1
  21. M. Baba, R. Snoeck, R. Pauwels, and E. D. Clercq, Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodefieiency virus, Antimicrob. Agents Chemother., 32(11), 1742 (1988). https://doi.org/10.1128/AAC.32.11.1742
  22. N. Ponce, C. Pujol, E. Damonte, M. Flores, and C. Stortz, Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies, Carbohydr. Res., 338(2), 153 (2003). https://doi.org/10.1016/S0008-6215(02)00403-2
  23. S. reeprame, K. Hayashi, J. B. Lee, U. Sankawa, and T. Hayashi, A novel antivirally active fucan sulfate derived from an edible brown alga Sargassum horneri, Chem. Pharm. Bull., l49(4), 484 (2001).
  24. Q. Zhang, Z. Lee, X. Niu, and Z. Hong, Effects of fucoidan on chronic renal failure in rats, Planta Med., 69(6), 537 (2003). https://doi.org/10.1055/s-2003-40634
  25. H. S. Jeong and J. H. Lee, Effects of dietary fiber from mosuku (Cladosiphon novae-caledoniae kylin) residue on antioxidant activity and anticancer in HT-29 human colon cancer cells according to extraction condition, Appl. Chem. Eng., 25(4), 363 (2014). https://doi.org/10.14478/ace.2014.1039
  26. I. H. Kim, D. G. Lee, S. H. Lee, J. M. Ha, B. J. Ha, S. G. Kim, and J. H. Lee, Antibacterial activity of Ulva lactuca against methcilline-resistance Staphylococcus aureus (MRSA), Biotechnol. Bioprocess Eng., 12(1), 579 (2007). https://doi.org/10.1007/BF02931358
  27. D. Hultmark, A. Engstrom, H. Bennich, R. Kapur, and H. G. Boman, Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae, Eur. J. Biochem., 127(1), 207 (1982). https://doi.org/10.1111/j.1432-1033.1982.tb06857.x
  28. R. I. Lehrer, M. Roseman, S. Harwig, R. Jackson, and P. Eisenhauer, Ultrasenstive assays for endogenous antimicrobial polypeptides, J. Immunol. Methods, 137(2), 67 (1991).
  29. V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybidic-phosphotungstic acid reagents, J. Enol. Viticult., 16(1), 144 (1965).
  30. C. C. Chang, M. H. Yang, H. M. Wen, and J. C. Chen, Estimation of total flavonoids contents in propolis by two complementary colorimetric methods, J. Food Drug Anal., 10(3), 178 (2002).
  31. K. Ishihara, T. Takemura, Y. Hamada, C. Sakai, S. Kondon, S. Nishiyama, K. Urabe, and J. Hearing, Pigment production in murine melanoma cell is regulated by tyrosinase, tyrosinase-related protein 1 (TRP1), DOPA chrome tautomerase (TRP2), and a melanogenic inhibitor, J. Invest. Dermatol., 100(3), 126 (1993). https://doi.org/10.1111/1523-1747.ep12462778
  32. T. S. Chang, An updated review of tyrosinase inhibitor, Int. J. Mol. Sci., 10(6), 2440 (2009). https://doi.org/10.3390/ijms10062440
  33. J. Bieth, B. Spiess, and C. Wermuth, The synthesis and analytical use of a high sensitive and convenient substrate of elastase, Biochem. Med., 11(4), 350 (1974). https://doi.org/10.1016/0006-2944(74)90134-3
  34. D. Gerlier and N. Thomasset, Use of MTT colorimeter assay to measure cell activation, J. Immunol. Methods, 94(2), 57 (1986). https://doi.org/10.1016/0022-1759(86)90215-2
  35. R. Busca and R. Ballotti, Cyclic AMP a key messenger in the regulation of skin pigmentation, Pigment Cell Res., 13(2), 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
  36. N. Tsuji, S. Moriwaki, Y. Suzuki, Y. Takema, and G. Imokawa, The role of elastase secreted by fibroblasts in wrinkle formation: implication through selective inhibition of elastase activity, Phtochem. Photobiol. J., 74(2), 283 (2001). https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2
  37. D. L. Dewitt, T. E. Rollins, J. S. Day, J. A. Gauge, and W. L. Smith, Orientation of the active site, and antigenic determinants of prostaglandin endoperoxide of synthase in the endoplasmic reticulum, J. Biol. Chem., 256(20), 10375 (1981).