DOI QR코드

DOI QR Code

눈동자를 이용한 사용자 인증기법

A Scheme for User Authentication using Pupil

  • 이재욱 (백석대학교 정보통신학부) ;
  • 강보선 (백석대학교 정보통신학부) ;
  • 이근호 (백석대학교 정보통신학부)
  • Lee, Jae-Wook (Division of Information Communication, BaekSeok University) ;
  • Kang, Bo-Seon (Division of Information Communication, BaekSeok University) ;
  • Lee, Keun-Ho (Division of Information Communication, BaekSeok University)
  • 투고 : 2016.08.02
  • 심사 : 2016.09.20
  • 발행 : 2016.09.28

초록

얼굴인증은 다양한 생체인증 중에서 거부감이 적고 변조가 어려워서 각광받고 있다. 얼굴인증의 알고리즘은 어떻게 알고리즘을 만드느냐에 따라서 정확성과 속도에 많은 차이를 가져온다. 눈동자를 추적 및 검출하여 얼굴의 검출 데이터와 함께 데이터를 추출함으로써 오탐률을 개선하고 정확하게 얼굴로 인증을 할 수 있도록 알고리즘을 연구하였다. Cascade를 통해서 얼굴을 검출하고 관심영역으로 지정 후 얼굴 영역을 균등하게 4등분하여 검출되는 객체의 좌표 값을 저장한다. 또한 검출된 눈에서 눈동자를 검출하기 위하여 이진화를 진행하고 Hough 변환을 통해 눈동자를 검출한다. 추출된 눈동자의 중심좌표를 저장하고 계산하여 데이터 매칭을 통해 얼굴 인증을 한다. 눈동자를 추적과 함께 얼굴의 데이터를 계산하여 정확하고 최적화된 얼굴인증 알고리즘을 연구한다.

Facial authentication has the limelight because it has less resistance and it is hard to falsify among various biometric identification. The algorithm of facial authentication can bring about huge difference in accuracy and speed by the algorithm construction. Along with face-extracted data by tracing and extracting pupil, the thesis studied algorithm which extracts data to improve error rate and to accurately authenticate face. It detects face by cascade, selects as significant area, divides the facial area into 4 equal parts to save the coordinate of object. Also, to detect pupil from the eye, the binarization is conducted and it detects pupil by Hough conversion. The core coordinate of detected pupil is saved and calculated to conduct facial authentication through data matching. The thesis studied optimized facial authentication algorithm which accurately calculates facial data with pupil trace.

키워드

참고문헌

  1. Hansung Lee, Yunsu Chung, Jeongnyeo Kim, Hyunsook Cho, "A Survey of Face Recognition Technologies and Standards", Korean Institute Of Information Technology, Vol. 8, No. 1, pp. 33-41, 2010.
  2. Youn-Jong Oh, Nam-Ho Kim, "An embedded invasion detection system by video data processing in home-network environment", Korea Multimedia Society, Vol. 1, No. 1, pp. 421-424, 2006.
  3. Dae-Wan Kwon, Dong-Won Park, "Design and Implementation of Application for Monitoring Companion Animals in Smart Devices", Journal of the Korea Convergence Society, Vol. 7, No. 2, pp. 7-12, 2016. https://doi.org/10.15207/JKCS.2016.7.2.007
  4. Kyung Shik Jang, Chan-Hee Lee, "Robust Face and Facial Feature Tracking in Image Sequences", The Korea Institute of Information and Communication Engineering, Vol. 14, No. 9, pp. 1972-1978, 2010. https://doi.org/10.6109/jkiice.2010.14.9.1972
  5. Hae-Min Moon, Sung Bum Pan, "Performance Analysis of Face Recognition by Distance according to Image Normalization and Face Recognition Algorithm", Korea Institute Of Information Security And Cryptology, Vol. 23, No. 4, pp. 737-742, 2013. https://doi.org/10.13089/JKIISC.2013.23.4.737
  6. MyounJae Lee, "A Study on Convergence Development Direction of Gesture Recognition Game",Journal of the Korea Convergence Society, Vol. 5, No 4, pp. 1-7, 2014. https://doi.org/10.15207/JKCS.2014.5.4.001
  7. Dong Uk Cho, Dong Won Kim, Mee-Hee Yoon, Seung Soo Shin, "Automatic Verification System by Biometrics", The Korea Contents Socieety, Vol. 1, No. 1, pp. 437-442, 2003.
  8. JuHyang Kim, JeongHoon Park, JongSeo Jeon, MinGoo Kang, SeongHyean Lee, "Recognition of Hand Interface for PC-Mouse using OpenCV", Korean Society For Internet Information, Vol. 1, No. 1, pp. 303-306, 2009.
  9. Sunghyun Yun, "The Biometric Authentication based Dynamic Group Signature Scheme", Journal of Korea Convergence Society, Vol. 7, No. 1, pp.49-55, 2016. https://doi.org/10.15207/JKCS.2016.7.1.049
  10. Dong-Uk Cho, Seung-Soo Shin, "Proposal and Implementation of Authentication System Using Human Face Biometric Features", The Korea Contents Society, Vol. 3, No. 2, pp. 24-30, 2003.
  11. Ki-Yeong Park, Sun-Young Hwang, "An Improved Normalization Method for Haar-like Features for Real-time Object Detection", Korea Institute Of Communication Science, Vol. 36, No. 8, pp. 505-515, 2011. https://doi.org/10.7840/KICS.2011.36C.8.505
  12. Seong-Mo Kim, Sang-Hyun Yu, Kyeongsoon Cho, "Design of Haar-like Feature Extraction and AdaBoost Classification Circuit for Object Recognition", The Institute of Electronics Engineers of Korea, Vol. 1, No. 1, pp. 61-64, 2014
  13. Bo-Seon Kang, Keun-Ho Lee, "Fire Alarm Solutions Through the Convergence of Image Processing Technology and M2M", Journal of the Korea Convergence Society, Vol. 7, No. 1, pp. 37-42, 2016. https://doi.org/10.15207/JKCS.2016.7.1.037
  14. Yeongseok Chae, Sangpil Han, Jaeyong Han, Hyuk Kim, Seongmin Kim, Bontae Koo, Joohyun Lee, "A study on the Haar-Like Feature(HLF) detection analysis and hand detection improvement system", Korea Information Science Society, Vol. 1, No. 1, pp. 438-440, 2015.
  15. JiHong Min, Jung-Chul Kim, Kicheon Hong, "Implementation of Drowsiness Driving Warning System based on Eyes Detection and Pupil Tracking", Korean Institute of Intelligent Systems, Vol. 15, No. 2, pp. 249-252, 2005.
  16. Chung-Kyue Kim, Chang-Zeng Lee, Jong-Seung Park, "A Study on the Indirect Interface Control System of the Automatic Extraction of the Eye Region followed by the Gaze Tracing", Korean Institute Of Information Technology, Vol. 6, No. 4, pp. 158-164, 2005.
  17. JiHong Min, Jung-Chul Kim, Kicheon Hong, "Development of an Image Processing Algorithm for Paprika Recognition and Coordinate Information Acquisition using Stereo Vision", The Korean Society For Bio-Environment Control, Vol. 24 No. 3, pp. 210-216, 2015. https://doi.org/10.12791/KSBEC.2015.24.3.210
  18. Chan-Hee Lee, Kyung Shik Jang, "Detection of Pupil using Template Matching Based on Genetic Algorithm in Facial Images", The Korea Institute of Information and Communication Engineering, Vol. 13, No. 7, pp. 1429-1436, 2009.
  19. Byoungmoo Lee, Dongil Han, "Development of Early Tunnel Fire Detection algorithm Using the Image Processing", Korea Information Sciencd Society, Vol. 3, No. 2, pp. 499-504, 2006.
  20. Jeong-Pyo Lee, Jong-Yeon Lee, Chang-Ho Hyun, "Coin Recognition and Classification Using Digital Image Processing", Korean Institute of Intelligent Systems, Vol. 22, No. 1, pp. 7-11, 2012. https://doi.org/10.5391/JKIIS.2012.22.1.7