DOI QR코드

DOI QR Code

Solid Circulation Rate in a Viscous Liquid-Solid Circulating Fluidized Bed

점성유체 액/고 순환유동층에서 입자의 순환속도

  • Hong, Sung Kyu (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jang, Hyung Ryun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lim, Dae Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Yoo, Dong Jun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kang, Yong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 홍성규 (충남대학교 응용화학공학과) ;
  • 장형륜 (충남대학교 응용화학공학과) ;
  • 임대호 (충남대학교 응용화학공학과) ;
  • 유동준 (충남대학교 응용화학공학과) ;
  • 강용 (충남대학교 응용화학공학과)
  • Received : 2016.02.02
  • Accepted : 2016.08.17
  • Published : 2016.10.01

Abstract

Characteristics of solid circulation rate in the liquid-solid circulating fluidized beds with viscous liquid medium were investigated. Effects of primary and secondary liquid velocities, particle size, liquid viscosity and height of solid particles piled up in the solid recycle device on the solid circulation rate were considered. The solid circulation rate increased with increasing primary and secondary liquid velocities, liquid viscosity and height of solid particles in the downcommer, but it decreased with increasing particle size. The particle rising velocity in the riser decreased with increasing the ratio of $U_{L1}/U_{L2}$ and particle size. The slip velocity of liquid and particle, $U_L/U_S$, decreased with increasing liquid viscosity but it increased with increasing particle size. The values of solid circulation rate were well correlated in terms of operating variables and dimensionless groups.

점성유체 액체-고체 순환유동층에서 고체순환속도의 특성에 대해 고찰하였다. 주액체유속, 2차액체의 유속, 유동입자의 크기, 액체의 점도 그리고 입자의 재순환을 위한 장치에서 입자 저장층의 높이가 입자의 순환속도에 미치는 영향을 검토하였다. 입자의 순환속도는 주액체의 유속, 2차액체의 유속, 액체의 점도 그리고 입자저장층의 높이가 증가함에 따라 증가하였으나, 유동입자의 크기가 증가함에 따라서는 감소하였다. 순환유동층의 상승관에서 유동입자의 상승속도는 주액체유속과 2차액체의 유속비($U_{L1}/U_{L2}$)와 유동입자의 크기가 증가함에 따라 감소하였다. 상승관에서 입자의 미끄러짐속도 즉, 연속액상의 유속과 유동입자의 상승속도비($U_L/U_S$)는 연속 액상의 점도가 증가함에 따라 감소하였으나, 유동입자의 크기가 증가함에 따라 증가하였다. 본 연구에서 구한 고체 순환속도는 실험변수 및 무차원군의 함수들로 상관식을 얻을 수 있었다.

Keywords

References

  1. Fan, L. S., Gas-Liquid-Solid Fluidization Engineering, Bufferworth, Boston, U.S.A.(1989).
  2. Kim, S. D. and Kang, Y., "Dispersed Phase Characteristics in Three-phase Fluidized Beds," Mixed Flow Hydrodynamics, Advances in Engineering Fluid Mechanics, Gulf Pub. Co., New York, U.S.A. (1996).
  3. Kim, S. D. and Kang, Y., "Hydrodynamics, Heat and Mass Transfer in Inverse and Circulating Three-phase Fluidized-bed Reactors for Wastewater Treatment," Surf. Sci., Catal., 159, 103-108(2006). https://doi.org/10.1016/S0167-2991(06)81545-4
  4. Atta, A., Razzak, S. A., Nigam, K. D. P. and Zhu, J. X., "(Gas)-liquid-solid Circulating Fluidized Bed Reactors: Characteristics and Applications," I&EC Research, 48, 7876-7892(2009).
  5. Cho, Y. J., Song, P. S., Lee, C. K., Kang, Y., Kim, S. D. and Fan, L. T., "Liquid Radial Dispersion in Liquid-solid Circulating Fluidized Beds with Viscous Liquid Medium," Chem. Eng. Commun., 192, 257-271(2005). https://doi.org/10.1080/00986440590473470
  6. Shin, K. S., Song, P. S., Lee, C. K., Kang, S. H., Kang, Y., Kim, S. D. and Kim, S. J., "Heat Transfer Coefficient in Viscous Liquidsolid Circulating Fluidized Beds," AIChE J., 51, 671-677(2005). https://doi.org/10.1002/aic.10291
  7. Vidyasagar, S., Krishnaiah, K. and Sai, P. S. T., "Macroscopic Properties of Liquid-solid Circulating Fluidized Bed with Viscous Liquid Medium," Chem. Eng. Process: Process Intesif., 50, 42-52(2011). https://doi.org/10.1016/j.cep.2010.11.004
  8. Natarajan, P., Velraj, R. and Seeniraj, R. V., "Hydrodynamic Similarity in Liquid-solid Circulating Fluidized Bed Risers," Powder Technol., 264, 166-176(2014). https://doi.org/10.1016/j.powtec.2014.05.027
  9. Song, L. and Zhu, J., "Experimental Investigation of the Effects of Particle Properties on Solid Holdup in an LSCFB Riser," Chem. Eng. J., 197, 322-329(2012). https://doi.org/10.1016/j.cej.2012.05.048
  10. van der Meer, E. H., Thorpe, R. B. and Davidson, J. F., "Dimesionless Groups for Practicable Similarity of Circulating Fluidized Beds," Chem. Eng. Sci., 54, 5368-5376(1999).
  11. Gnasasundaram, N., Loganathan, M. and Perumal, K., "Solid Holdup in Liquid Solid Circulating Fluizied Bed with Viscous Liquid Medium," Alexandria Eng. J., 53, 958-968(2014).
  12. Lim, D. H., Lim, H., Jin, H. R. and Kang, Y., "Holdup and Flow Behavior of Fluidized Solid Particles in a Liquid-solid Circulating Fluidized Bed," Korean Chem. Eng. Res., 52(3), 371-377(2014). https://doi.org/10.9713/kcer.2014.52.3.371
  13. Lan, Q., Bassi, A. S., Zhu, J. X. J. and Margaritis, A., "Continuous Protein Recovery from Whey Using with a Liquid-solid Circulating Fluidized Bed Ion Exchange Extraction," Biotech. Bioeng., 78, 157-163(2002). https://doi.org/10.1002/bit.10171
  14. Petal, A., Zhu, J. and Nakhla, G., "Simultaneous Carbon, Nitrogen and Phosphorous Removal from Municipal Wastewater in a Circulating Fluidized Bed Bioreactor," Chemosphere, 65, 1103-1112(2006). https://doi.org/10.1016/j.chemosphere.2006.04.047
  15. Petal, M., Bassi, A. S. and Gomaa, H., "Investigation of a Dualparticle Liquid-solid Circulating Fluidized Bed Bioreactor for Extractive Fermentation of Lactic Acid," Biotechnol. Prog., 24, 821-831(2008). https://doi.org/10.1002/btpr.6
  16. Lim, D. H., Jang, J. H., Kang, Y. and Jun, K. W., "Flow Behavior of Wakes in a Three-phase Slurry Bubble Column with Viscous Liquid Medium," Korean J. Chem. Eng., 28(3), 974-979(2011). https://doi.org/10.1007/s11814-010-0403-4
  17. Lim, D. H., Park, J. H., Kang, Y. and Jun, K. W., "Structure of Bubble Holdups in a Viscous Slurry Bubble Column with Low Surface Tension Media," Fuel Processing Technol., 108, 2-7(2013). https://doi.org/10.1016/j.fuproc.2012.06.024
  18. Jin, H. R., Lim, D. H., Lim, H., Kang, Y., Jung, H. and Kim, S. D., "Demarcation of Large and Small Bubbles in Viscous Slurry Bubble Columns," I&EC Research, 51, 2062-2069(2012).
  19. Jin, H. R. Lim, H., Lim, D. H., Kang, Y. and Jun, K. W., "Heat Transfer in a Liquid-solid Circulating Fluidized Bed Reactor with Low Surface Tension Media," Chinese J. Chem. Eng., 21, 844-849(2013). https://doi.org/10.1016/S1004-9541(13)60556-X
  20. Lee, J. S., Jin, H. R., Lim, H., Lim, D. H., Kang, Y., Kim, S. D. and Jun, K. W., "Interfacial Area and Liquid-side and Overall Mass Transfer Coefficients in a Three-phase Circulating Fluidized Bed," Chem. Eng. Sci., 100, 203-261(2013). https://doi.org/10.1016/j.ces.2013.02.012

Cited by

  1. Characteristics of Three-Phase (Gas–Liquid–Solid) Circulating Fluidized Beds vol.51, pp.9, 2018, https://doi.org/10.1252/jcej.17we205
  2. Solid Circulation Rate in a 3-phase (gas/liquid/solid) Viscous Circulating Fluidized Bed vol.56, pp.2, 2016, https://doi.org/10.9713/kcer.2018.56.2.186