DOI QR코드

DOI QR Code

Design of the Reconfigurable Frequency Selective Surface for X-Band Applications with Improved Isolation

격리도가 향상된 X-Band 재구성 주파수 선택 표면구조 설계

  • Lee, In-Gon (Department of Information & Communication Engineering, Kongju National University) ;
  • Park, Yong-Bae (Department of Electrical & Computer Engineering, Ajou University) ;
  • Chun, Heung-Jae (Department of Mechanical Engineering, Yonsei University) ;
  • Kim, Yoon-Jae (Agency for Defense Development) ;
  • Hong, Ic-Pyo (Department of Information & Communication Engineering, Kongju National University)
  • 이인곤 (공주대학교 정보통신공학부) ;
  • 박용배 (아주대학교 전자공학과) ;
  • 전흥재 (연세대학교 기계공학부) ;
  • 김윤재 (국방과학연구소) ;
  • 홍익표 (공주대학교 정보통신공학부)
  • Received : 2016.04.27
  • Accepted : 2016.09.07
  • Published : 2016.10.07

Abstract

This paper presents the design of reconfigurable frequency selective surfaces for X-band bandpass operation with improved isolation. The proposed reconfigurable FSS is composed of a four-legged loaded element, a inductive stub and a bias grid. The PIN diode is located between the four-legged loaded element and the stub, which can control the frequency response of reconfigurable FSS by ON/OFF state. By adjusting the length of the stub, the desired bandpass frequency and the improved isolation between ON and OFF state can be obtained. For validation of simulated results, we have carried out transmission characteristic measurements using rectangular waveguide of WR-90. The measured results are in good agreements with the simulated results.

본 논문에서는 X-대역 동작 주파수 재구성이 가능하며, 격리도가 향상된 대역 통과 재구성 주파수 선택 표면구조(frequency selective surface)를 설계하였다. 제안된 재구성 FSS의 단위구조는 Four-legged loaded 소자와 인덕턴스 성분의 스터브 그리고 전원 인가를 위한 바이어스 그리드로 구성되어 있으며, Four-legged loaded 소자와 스터브 사이에 위치한 핀 다이오드의 ON/OFF 상태를 통해 단위구조의 전기적인 길이를 조절함으로써 동작 주파수의 재구성 특성을 구현하고, 스터브의 길이 조절을 통해 원하는 동작 주파수의 조절이 가능하며, ON/OFF 상태의 투과 특성간 향상된 격리도 특성을 얻을 수 있다. 재구성 FSS를 제작하여 구형 도파관 WR-90을 이용한 투과 특성 측정을 통해 설계 결과와 비교적 잘 일치하는 것을 확인하였다.

Keywords

References

  1. B. A. Munk, Frequency Selective Surface: Theory and Design, John Wiley & Sons, 2005.
  2. C. G. M. van't Klooster, A. Pacheco, C. Montesano, J. A. Encinar, and A. Culebras, "Reflect-array sub-reflector in X-Ka band antenna", 2013 IEEE International Symposium on Antennas and Propagation (ISAP), vol. 2, pp. 669-672, 2013.
  3. T. Kan, K. Matsumoto, and I. Shimoyama, "Nano-pillar structure for sensitivity enhancement of SPR sensor", IEEE International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1481-1484, 2009.
  4. F. Costa, A. Monorchio, "A frequency selective radome with wideband absorbing properties", IEEE Transaction on Antennas and Propagation, vol. 60, no. 6, pp. 2740-2747, 2012. https://doi.org/10.1109/TAP.2012.2194640
  5. L. Sun, H. Cheng, Y. Zhou, and J. Wang, "Broadband metamaterial absorber based on coupling resistive frequency selective surface", Optics Express, vol. 20, no. 4, pp. 4675-4680, 2012. https://doi.org/10.1364/OE.20.004675
  6. E. Arnaud, A. Kanso, T. Monediere, D. Passerieux, M. Thevenot, E. Beaudrouet, C. Dossou-Yovo, and R. Noguera, "Inkjet printing of frequency selective surfaces on EBG antenna radome", 6th European Conference on Antennas Propagation(EuCAP), pp. 2693-2696, 2012.
  7. H. G. Sung, K. W. Sowerby, and A. G. Williamson, "Modeling a low-cost frequency selective wall for wireless-friendly indoor environments", IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 311-314, 2006. https://doi.org/10.1109/LAWP.2006.878899
  8. C. Sudhendra, A. R. Madhu, A. C. R. Pillai, R. Kark, and T. S. Rukmini, "A novel ultra wide band radar Absorber based on hexagonal resistive patch FSS", In Applied Electromagnetics Conference (AEMC), pp. 1-2, 2013.
  9. S. V. Hum, J. Perruisseau-Carrier, "Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review", IEEE Trans. Antennas & Propagation, vol. 62, no. 1, pp. 183-198, 2014. https://doi.org/10.1109/TAP.2013.2287296
  10. J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, "Reconfigurable and tunable metamaterials: a review of the theory and applications", International Journal of Antennas and Propagation, vol. 2014, 2014.
  11. K. ElMahgoub, F. Yang, and A. Z. Elsherbeni, "Design of novel reconfigurable frequency selective surfaces with two control techniques", Progress in Electromagnetics Research C, vol. 35, pp. 135-145, 2013. https://doi.org/10.2528/PIERC12092812
  12. K. Fuchi, J. Tang, B. Crowgey, A. R. Diaz, E. J. Rothwell, and R. O. Ouedraogo, "Origami tunable frequency selective surfaces", IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 473-475, 2012. https://doi.org/10.1109/LAWP.2012.2196489
  13. P. Yaghmaee, O. H. Karabey, B. Bates, C. Fumeaux, and R. Jakoby, "Electrically tuned microwave devices using liquid crystal technology", International Journal of Antennas and Propagation, vol. 2013, 2013.
  14. M. Safari, S. Cyrus, and S. Lotfollah, "X-band tunable frequency selective surface using MEMS capacitive loads", IEEE Transactions on Antennas and Propagation, vol. 63, no. 3, pp. 1014-1021, 2015. https://doi.org/10.1109/TAP.2014.2386304
  15. B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, "Dual-band tunable screen using complementary split ring resonators", IEEE Trans. Antennas & Propagation, vol. 58, no. 11, pp. 3761-3765, 2010. https://doi.org/10.1109/TAP.2010.2072900
  16. F. Bayatpur, S. Kamal, "Design and analysis of a tunable miniaturized-element frequency-selective surface without bias network", IEEE Transactions on Antennas and Propagation, vol. 58, no. 4, pp. 1214-1219, 2010. https://doi.org/10.1109/TAP.2010.2041173
  17. M. Niroo-Jazi, Mahmoud, and T. A. Denidni, "Reconfigurable dual-band frequency selective surfaces using a new hybrid element", 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 2673-2676, 2011.
  18. M. M. Masud, B. Ijaz, A. Iftikhar, M. N. Rafiq, and B. D. Braaten, "A reconfigurable dual-band metasurface for EMI shielding of specific electromagnetic wave components", 2013 IEEE International Syposium on Electromagnetic Compatibility(EMC), pp. 640-644, 2013.
  19. K. Qi, Y. Xiaofeng, and W. Yongfeng, "A tunable microwave absorber based on active frequency selective surface", Progress in Electromagnetics Research Symposium Proceedings, pp. 791-793, 2014.
  20. P. Kong, et al., "Switchable frequency selective surfaces absorber/reflector for wideband applications", Journal of Electromagnetic Waves and Applications, vol. 29, no. 11, pp. 1473-1485, 2015. https://doi.org/10.1080/09205071.2015.1049713
  21. L. Jialin, et al., "Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface", IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 774-777, 2016. https://doi.org/10.1109/LAWP.2015.2473688
  22. H. Wang, et al., "Broadband tunability of polarizationinsensitive absorber based on frequency selective surface", Scientific Reports, vol. 6, 2016.