DOI QR코드

DOI QR Code

전년도 생육 억새의 늦은 수확이 당년 생육특성과 수량에 미치는 영향

Effects of Delayed Harvesting of Miscanthus spp. Risen in the Previous Year on its Current Year'S Yield and Growth Characteristics

  • 문윤호 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 이지은 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 유경단 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 안기홍 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 안종웅 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 송연상 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 이경보 (농촌진흥청 국립식량과학원 바이오에너지작물연구소)
  • Moon, Youn-Ho (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Lee, Ji-Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Yu, Gyeong-Dan (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Cha, Young-Lok (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • An, Gi Hong (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Ahn, Joung Woong (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Song, Yeon-Sang (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Lee, Kyeong-Bo (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
  • 투고 : 2016.03.04
  • 심사 : 2016.08.04
  • 발행 : 2016.09.30

초록

바이오에너지용 억새의 트랙터 부착 수확기 등 중장비 동원 늦은 수확에 따른 부작용을 구명하기 위해 전년도 생육 줄기의 늦은 수확 시기별 당년 생육특성과 마른줄기 수량을 구명한 결과는 다음과 같다. 1. 시험포장의 지하 10 cm 토양 경도는 맹아시, 맹아기, 맹아종 수확에서 각각 650, 793, 735 kPa로 일정한 경향이 없었으나 지하 20 cm에서는 각각 741, 915, 1,045 kPa로 늦게 수확할수록 단단해 졌다. 2. 이질 3배체에 비해 거대1호가 생육시기별 경수의 변이폭이 컸다. 거대 1호는 수확 시기별로 가장 늦은 맹아종에서 생육중기(5월 22일)에 169개/$m^2$로 가장 많았으나 생육 최성기(7월 22일)에 70개/$m^2$로 급격히 감소하였다. 3. 수확시기가 늦을수록 당년 생성된 지하경이 전년의 것에 비해 가늘어져 맹아종 수확에서 전년, 당년생성 지하경태가 거대 1호는 각각 9.2 mm, 6.7 mm 이질 3배체는 각각 8.5 mm, 8.0 mm였다. 4. 수확시기가 늦을수록 경장이 작아지고 아울러 줄기수량도 감소하였다. 거대1호와 이질3배체의 경장은 맹아시 수확에서 각각 308 cm, 374 cm였으나 맹아종 수확에서는 각각 268 cm, 341 cm로 작아졌다. 줄기 수량 또한 맹아시 수확에서는 각각 1,440 kg/10a, 1,777 kg/10a였으나 맹아종 수확에서는 각각 847 kg/10a, 963 kg/10a로 크게 감소하였다. 5. 출수율은 거대 1호의 경우 맹아시 수확에서 3.9%로 극히 낮았고, 맹아기 및 맹아종 수확에서는 거의 출수되지 않았다. 이질3배체는 맹아시 수확에서 49.6%였고, 맹아기, 맹아종에서도 각각 40.6%, 21.8% 수준을 유지하였다.

This study examined the effects of delayed harvest of Miscanthus on its biomass yield and growth characteristics. The trial was conducted at a 5-year-old demonstration field, using Miscanthus sacchariflorus cv. Geodae 1 and Miscanthus ${\times}$ giganteus. Harvesting was carried out using a mower, baler, and bale picker driven by a 5-ton tractor. Harvesting dates were the $1^{st}$, $10^{th}$, and $17^{th}$ of April, which respectively corresponded with the first, mid, and last emerging dates of new shoots. The sequential changes in stem number due to delayed harvesting were investigated on April $29^{th}$, May $27^{th}$, July $22^{nd}$, and October $30^{th}$, which corresponded to the juvenile, mid, luxuriant, and senescence stem stages, respectively. Soil penetration resistance, biomass yield, and growth characteristics were investigated on October $30^{th}$. There was no difference in soil penetration resistance at a depth of 10 cm, but it increased at a depth of 20 cm in proportion to the delayed harvesting time. The sequential change in stem number due to delayed harvesting was greater in M. sacchariflorus cv. Geodae 1 than in M. ${\times}$ giganteus. In M. sacchariflorus cv. Geodae 1, which was harvested on the last emerging date of new shoots, the stem number was $169/m^2$ in the mid stage but decreased to $70/m^2$ in the luxuriant stage. The diameter of newly developed rhizomes, stem height, and biomass yield decreased in the two Miscanthus species due to delayed harvesting. The ratio of Miscanthus headings, which is a critical characteristic for landscape use, also decreased due to delayed harvesting. Heading of M. sacchariflorus cv. Geodae 1 was not observed in plots harvested on the mid and last emerging dates of new shoots.

키워드

참고문헌

  1. An, G. H., K. R. Um, J. H. Lee, Y. H. Jang, J. E. Lee, G. D. Yu, Y. L. Cha, Y. H. Moon, and J. W. Ahn. 2015. Flowering patterns of Miscanthus germplasms in Korea. Korean J. Crop Sci. 60(4) : 510-517. https://doi.org/10.7740/kjcs.2015.60.4.510
  2. Atkinson, C. J. 2009. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass and Bioenergy. 33(5) : 752-759. https://doi.org/10.1016/j.biombioe.2009.01.005
  3. Beale, C. V., D. A. Bint, and S. P. Long. 1996. Leaf photosynthesis in the C4-grass Miscanthus giganteus, growing in the cool temperate climate of southern England. J. Exp. Bot. 47 : 267-273. https://doi.org/10.1093/jxb/47.2.267
  4. Bullard, M. and P. Metcalfe. 2001. Estimating the energy requirements and $CO_2$ Emission from production of the perennial grasses miscanthus, switchgrass and reed canary grass. ADAS Consulting Ltd, USA. p. 94.
  5. Chen, S. and A. R. Stephen. 2006. Miscanthus Andersson, Ofvers. Kongl. Vetensk.-Akad. Forh. Flora China. 22 : 581-583.
  6. Christian, D. G., A. B. Riche, and N. E. Yates. 2008. Growth, yield and mineral content of Miscanthus ${\time}$ giganteus grown as a biofuel for 14 successive harvests. Industrial crops and products. 28 : 320-327. https://doi.org/10.1016/j.indcrop.2008.02.009
  7. Greef, J. M., M. Deuter, C. Jung, and J. Schondelmaier. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genetic Resources and Crop Evolution. 44 : 185-195. https://doi.org/10.1023/A:1008693214629
  8. Himken, M., J. Lammel, D. Neukirchen, U. Czypionka-Krause, and H. W. Olfs. 1997. Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant and Soil. 189 : 117-126. https://doi.org/10.1023/A:1004244614537
  9. Lewandowski, I., J. Clifton-Brown, J. M. O. Scurlock, and W. Huisman. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy. 19 : 209-227. https://doi.org/10.1016/S0961-9534(00)00032-5
  10. Lewandowski, I. and A. Heinz. 2003. Delayed harvest of miscanthus -influences on biomass quantity and quality and environmental impacts of energy production. European Journal of Agronomy. 19 : 45-63. https://doi.org/10.1016/S1161-0301(02)00018-7
  11. Michael, G. O'Flynn, John M. Finnan, Edna M. Curley, and Kevin P. McDonnell. 2015. Annually repeated traffic in delayed Miscanthus giganteus harvests; effects on crop response and mitigation measures. Soil & Tillage Research. 148 : 133-141. https://doi.org/10.1016/j.still.2014.12.011
  12. Michael, G. O'Flynn, John M. Finnan, Edna M. Curley, and Kevin P. McDonnell. 2014. Reducing crop damage and yield loss in late harvests of Miscanthus x giganteus. Soil and Tillage Research. 140 : 8-19. https://doi.org/10.1016/j.still.2014.02.005
  13. Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn, S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of "Miscanthus" the Promising Bioenergy Crop. Kor. J. Weed Sci. 30(4) : 330-339. https://doi.org/10.5660/KJWS.2010.30.4.330
  14. Morris, G. Cline. 1991. Apical Dominance. The Botanical Review. 57(4) : 318-316. https://doi.org/10.1007/BF02858771
  15. Noh, T. H., S. Y. Lee, S. S. Kim, J. K. Lee, H. T. Shin, and S. Y. Cho. 1997. Meto-ecological characterization of North Korean Rice Varieties. Korean Journal of Breeding. 29(4) : 404-409.
  16. O'Flynn, M., K. McDonnell, and J. Finnan. 2011. The influence of harvest traffic, before and after shoot emergence and in wet and dry soil conditions, on soil compaction, crop response and yield potential in an establishing Miscanthus crop. In: Cummins, E., Curran, T. (Eds.), Biosystems Engineering Research Review 16. University College Dublin, Dublin, pp. 67-70.
  17. Tolon-Becerra, A., X. B. Lastra-Bravo, G. F. Botta, M. Tourn, P. Linares, M. Ressia, and R. Balbuena. 2011. Traffic effect on soil compaction and yields of wheat in Spain. Spanish Journal of Agricultural Research. 9(2) : 395-403. https://doi.org/10.5424/sjar/20110902-235-10
  18. Yan, J., W. Chen, F. Luo, H. Ma, A. Meng, X. Li, M. Zhu, S. Li, H. Zhou, W. Zhu, S. Ge, J. Li, and T. Sang. 2012. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy. 4(1) : 49-60. https://doi.org/10.1111/j.1757-1707.2011.01108.x