References
- Aguoru CU, Okibe PO. 2015. Content and composition of lipid produced by Chlorella vulgaris for biodiesel production. Adv. Life Sci. Technol. 36: 96-100.
- Ahmad F, Khan AU, Yasar A. 2013. The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Bot. 45: 461-465.
- Al-lwayzy SH, Yusaf T, Al-Juboori RA. 2014. Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies 7: 1829-1851. https://doi.org/10.3390/en7031829
- Battah M, El-Ayoty Y, Abomohra A-EF, El-Ghany SA, Esmael A. 2013. Optimization of growth and lipid production of the Chlorophyte Microalga Chlorella vulgaris as a feedstock for biodiesel production. World Appl. Sci. J. 28: 1536-1543.
- Bi Z, He BB. 2013. Characterization of microalgae for the purpose of biofuel production. Biol. Eng. Trans. 56: 1529-1539.
- Borowitzka MA. 2013. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 25: 743-756. https://doi.org/10.1007/s10811-013-9983-9
- Cheirsilp B, Suwannarat W, Niyomdecha R. 2011. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. N. Biotechnol. 28: 362-368. https://doi.org/10.1016/j.nbt.2011.01.004
- Chu FF, Chu PN, Cai PJ, Li WW, Lam PK, Zeng RJ. 2013. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour. Technol. 134: 341-346. https://doi.org/10.1016/j.biortech.2013.01.131
- Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48: 1146-1151.
- Friedl A, Padouvas E, Rotter H, Varmuza K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544: 191-198. https://doi.org/10.1016/j.aca.2005.01.041
- Frumento D, Casazza AA, Al Arni S, Converti A. 2013. Cultivation of Chlorella vulgaris in tubular photobioreactors: a lipid source for biodiesel production. Biochem. Eng. J. 81: 120-125. https://doi.org/10.1016/j.bej.2013.10.011
- Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269-274. https://doi.org/10.1007/s10295-008-0495-6
- Hamed SR. 2015. Complementary production of biofuels by the green alga Chlorella vulgaris. Int. J. Renew. Energy Res. 18: 936-943.
- Heredia-Arroyo T, Wei W, Ruan R, Hu B. 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35: 2245-2253. https://doi.org/10.1016/j.biombioe.2011.02.036
- Hoshina R, Iwataki M, Imamura N. 2010. Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. Phycol. Res. 58: 188-201. https://doi.org/10.1111/j.1440-1835.2010.00579.x
- Huntley ME, Redalje DG. 2007. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation Adapt. Strateg. Glob. Chang. 12: 573-608. https://doi.org/10.1007/s11027-006-7304-1
- Illman AM, Scragg AH, Shales SW. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 27: 631-635. https://doi.org/10.1016/S0141-0229(00)00266-0
- Koetschan C, Förster F, Keller A, Schleicher T, Ruderisch B, Schwarz R, et al. 2010. The ITS2 Database III—sequences and structures for phylogeny. Nucleic Acids Res. 38: D275-D279. https://doi.org/10.1093/nar/gkp966
- Knothe G. 2010. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36: 364-373. https://doi.org/10.1016/j.pecs.2009.11.004
- Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. 2008. Biofuels from microalgae. Biotechnol. Prog. 24: 815-820.
- Lohman EJ, Gardner RD, Pedersen T, Peyton BM, Cooksey KE, Gerlach R. 2015. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris. Biotechnol. Biofuels 8: 1. https://doi.org/10.1186/s13068-014-0179-6
- Mallick N, Mandal S, Singh AK, Bishai M, Dash A. 2011. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J. Chem. Technol. Biotechnol. 87: 137-145.
- Mariotti F, Tomé D, Mirand PP. 2008. Converting nitrogen into protein—beyond 6.25 and Jones' factors. Crit. Rev. Food Sci. Nutr. 48: 177-184. https://doi.org/10.1080/10408390701279749
- Marudhupandi T, Gunasundari V, Kumar TT, Tissera KR. 2014. Influence of citrate on Chlorella vulgaris for biodiesel production. Biocatal. Agric. Biotechnol. 3: 386-389.
- Mehta LR, Dworkin RH, Schwid SR. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5: 82-92.
- Mitra D, van Leeuwen JH, Lamsal B. 2012. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res. 31: 40-48.
- O’Donnell K. 1993. Fusarium and its near relatives. pp. 225-233. In Reynolds DR, Taylor JW (eds.), The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CBA International, Wallingford.
- Packaged Facts. 2012. The Global Market for EPA/DHA Omega-3 Products. Published online at: http://www.packagedfacts.com/Global-EPA-DHA-7145087/(accessed on 7 April 2016).
- Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P. 2013. Highly valuable microalgae: biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 40: 781-796. https://doi.org/10.1007/s10295-013-1281-7
- Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.
- Rizzo AM, Prussi M, Bettucci L, Libelli IM, Chiaramonti D. 2013. Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl. Energy 102: 24-31. https://doi.org/10.1016/j.apenergy.2012.08.039
- Ross AB, Jones JM, Kubacki ML, Bridgeman T. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99: 6494-6504. https://doi.org/10.1016/j.biortech.2007.11.036
- Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1: 20-43. https://doi.org/10.1007/s12155-008-9008-8
- Scragg AH, Illman AM, Carden A, Shales SW. 2002. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23: 67-73. https://doi.org/10.1016/S0961-9534(02)00028-4
- Stein SE, Scott DR. 1994. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 5: 859-866. https://doi.org/10.1016/1044-0305(94)87009-8
- Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG. 2010. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1: 47-58. https://doi.org/10.4155/bfs.09.1
- Tabatabaei M, Karimi K, Sárvári Horváth I, Kumar R. 2015. Recent trends in biodiesel production. Biofuel Res. J. 7: 258-267.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego.
- Wolf M, Achtziger M, Schultz J, Dandekar T, Müller T. 2005. Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 11: 1616-1623. https://doi.org/10.1261/rna.2144205
- Yeo I, Jeong J, Cho Y, Hong J, Yoon H-S, Kim SH, et al. 2011. Characterization and comparison of biodiesels made from Korean freshwater algae. Bull. Korean Chem. Soc. 32: 2830-2832. https://doi.org/10.5012/bkcs.2011.32.8.2830
- Yoon HS, Hackett JD, Bhattacharya D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. U.S.A. 99: 11724-11729. https://doi.org/10.1073/pnas.172234799
- Zheng H, Yin J, Gao Z, Huang H, Ji X, Dou C. 2011. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 164: 1215-1224. https://doi.org/10.1007/s12010-011-9207-1
Cited by
- A Feasibility Study of Wastewater Treatment Using Domestic Microalgae and Analysis of Biomass for Potential Applications vol.11, pp.11, 2016, https://doi.org/10.3390/w11112294
- Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov. vol.17, pp.8, 2016, https://doi.org/10.1080/14772000.2019.1690597
- Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica vol.8, pp.11, 2020, https://doi.org/10.3390/jmse8110935
- Removal of total nitrogen from wastewater by a combination of Chlorella sp. and audible sound vol.84, pp.10, 2016, https://doi.org/10.2166/wst.2021.345