DOI QR코드

DOI QR Code

Uncoupling Protein, UCP-4 May Be Involved in Neuronal Defects During Aging and Resistance to Pathogens in Caenorhabditis elegans

  • Cho, Injeong (Department of Biology Education, College of Education, Chosun University) ;
  • Hwang, Gyu Jin (Department of Biology Education, College of Education, Chosun University) ;
  • Cho, Jeong Hoon (Department of Biology Education, College of Education, Chosun University)
  • 투고 : 2016.05.13
  • 심사 : 2016.08.01
  • 발행 : 2016.09.30

초록

Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins that function to dissipate proton motive force and mitochondrial membrane potential. One UCP has been identified in Caenorhabditis elegans (C. elegans), namely UCP-4. In this study, we examined its expression and localization using a GFP marker in C. elegans. ucp-4 was expressed throughout the body from early embryo to aged adult and UCP-4 was localized in the mitochondria. It is known that increased mitochondrial membrane protential leads to a reactive oxygen species (ROS) increase, which is associated with age-related diseases, including neurodegenerative diseases in humans. A ucp-4 mutant showed increased mitochondrial membrane protential in association with increased neuronal defects during aging, and the neurons of ucp-4 overexpressing animals showed decreased neuronal defects during aging. These results suggest that UCP-4 may be involved in neuroprotection during aging via relieving mitochondrial membrane protential. We also investigated the relationship between UCP-4 and innate immunity because increased ROS can affect innate immunity. ucp-4 mutant displayed increased resistance to the pathogen Staphylococcus aureus compared to wild type. The enhanced immunity in the ucp-4 mutant could be related to increased mitochondrial membrane protential, presumably followed by increased ROS. In summary, UCP-4 might have an important role in neuronal aging and innate immune responses through mediating mitochondrial membrane protential.

키워드

참고문헌

  1. Arsenijevic, D., Onuma, H., Pecqueur, C., Raimbault, S., Manning, B.S., Miroux, B., Couplan, E., Alves-Guerra, M.C., Goubern, M., Surwit, R., et al. (2000). Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 26, 435-439. https://doi.org/10.1038/82565
  2. Back, P., Braeckman, B.P., and Matthijssens, F. (2012). ROS in aging Caenorhabditis elegans: damage or signaling? Oxid. Med. Cell Longev. 2012, 608478.
  3. Basu Ball, W., Kar, S., Mukherjee, M., Chande, A.G., Mukhopadhyaya, R., and Das, P.K. (2011). Uncoupling protein 2 negatively regulates mitochondrial reactive oxygen species generation and induces phosphatase-mediated anti-inflammatory response in experimental visceral leishmaniasis. J. Immunol. 187, 1322-1332. https://doi.org/10.4049/jimmunol.1004237
  4. Beckman, K.B., and Ames, B.N. (1998). The free radical theory of aging matures. Physiol. Rev. 78, 547-581. https://doi.org/10.1152/physrev.1998.78.2.547
  5. Boveris, A., Oshino, N., and Chance, B. (1972). The cellular production of hydrogen peroxide. Biochem. J. 128, 617-630. https://doi.org/10.1042/bj1280617
  6. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
  7. Chan, C.B., MacDonald, P.E., Saleh, M.C., Johns, D.C., Marban, E., and Wheeler, M.B. (1999). Overexpression of uncoupling protein 2 inhibits glucose-stimulated insulin secretion from rat islets. Diabetes 48, 1482-1486. https://doi.org/10.2337/diabetes.48.7.1482
  8. Chavez, V., Mohri-Shiomi, A., Maadani, A., Vega, L.A., and Garsin, D.A. (2007). Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176, 1567-1577. https://doi.org/10.1534/genetics.107.072587
  9. Chen, C.H., Chen, Y.C., Jiang, H.C., Chen, C.K., and Pan, C.L. (2013). Neuronal aging: learning from C. elegans. J. Mol. Signal. 8, 14. https://doi.org/10.1186/1750-2187-8-14
  10. Cho, I., Hwang, G.J., and Cho, J.H. (2015). pxn-1 and pxn-2 May Interact Negatively during Neuronal Development and Aging in C. elegans. Mol. Cells 38, 729-733. https://doi.org/10.14348/molcells.2015.0124
  11. Deierborg, T., Wieloch, T., Diano, S., Warden, C.H., Horvath, T.L., and Mattiasson, G. (2008). Overexpression of UCP2 protects thalamic neurons following global ischemia in the mouse. J. Cereb. Blood Flow Metab. 28, 1186-1195. https://doi.org/10.1038/jcbfm.2008.8
  12. Divakaruni, A.S., and Brand, M.D. (2011). The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 26, 192-205. https://doi.org/10.1152/physiol.00046.2010
  13. Duan, W., and Mattson, M.P. (1999). Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 57, 195-206. https://doi.org/10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P
  14. Echtay, K.S. (2007). Mitochondrial uncoupling proteins--what is their physiological role? Free Radic. Biol. Med. 43, 1351-1371. https://doi.org/10.1016/j.freeradbiomed.2007.08.011
  15. Echtay, K.S., and Brand, M.D. (2007). 4-hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production. Redox Rep. 12, 26-29. https://doi.org/10.1179/135100007X162158
  16. Echtay, K.S., Murphy, M.P., Smith, R.A., Talbot, D.A., and Brand, M.D. (2002). Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J. Biol. Chem. 277, 47129-47135. https://doi.org/10.1074/jbc.M208262200
  17. Echtay, K.S., Esteves, T.C., Pakay, J.L., Jekabsons, M.B., Lambert, A.J., Portero-Otin, M., Pamplona, R., Vidal-Puig, A.J., Wang, S., Roebuck, S.J., et al. (2003). A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 22, 4103-4110. https://doi.org/10.1093/emboj/cdg412
  18. Erlanson-Albertsson, C. (2003). The role of uncoupling proteins in the regulation of metabolism. Acta. Physiol. Scand. 178, 405-412. https://doi.org/10.1046/j.1365-201X.2003.01159.x
  19. Fahn, S., and Cohen, G. (1992). The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann. Neurol. 32, 804-812. https://doi.org/10.1002/ana.410320616
  20. Farkas, D.L., Wei, M.D., Febbroriello, P., Carson, J.H., and Loew, L.M. (1989). Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys. J. 56, 1053-1069. https://doi.org/10.1016/S0006-3495(89)82754-7
  21. Gates, A.C., Bernal-Mizrachi, C., Chinault, S.L., Feng, C., Schneider, J.G., Coleman, T., Malone, J.P., Townsend, R.R., Chakravarthy, M.V., and Semenkovich, C.F. (2007). Respiratory uncoupling in skeletal muscle delays death and diminishes agerelated disease. Cell Metab. 6, 497-505. https://doi.org/10.1016/j.cmet.2007.10.010
  22. Haines, B., and Li, P.A. (2012). Overexpression of mitochondrial uncoupling protein 2 inhibits inflammatory cytokines and activates cell survival factors after cerebral ischemia. PLoS One 7, e31739. https://doi.org/10.1371/journal.pone.0031739
  23. Hansford, R.G., Hogue, B.A., and Mildaziene, V. (1997). Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J. Bioenerg. Biomembr. 29, 89-95. https://doi.org/10.1023/A:1022420007908
  24. Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300. https://doi.org/10.1093/geronj/11.3.298
  25. Harman, D. (1972). The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145-147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x
  26. Harman, D. (2009). Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology 10, 773-781. https://doi.org/10.1007/s10522-009-9234-2
  27. Hekimi, S., Lapointe, J., and Wen, Y. (2011). Taking a "good" look at free radicals in the aging process. Trends Cell Biol. 21, 569-576. https://doi.org/10.1016/j.tcb.2011.06.008
  28. Hwang, A.B., Ryu, E.A., Artan, M., Chang, H.W., Kabir, M.H., Nam, H.J., Lee, D., Yang, J.S., Kim, S., Mair, W.B., et al. (2014). Feedback regulation via AMPK and HIF-1 mediates ROSdependent longevity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 111, E4458-4467. https://doi.org/10.1073/pnas.1411199111
  29. Iser, W.B., Kim, D., Bachman, E., and Wolkow, C. (2005). Examination of the requirement for ucp-4, a putative homolog of mammalian uncoupling proteins, for stress tolerance and longevity in C. elegans. Mech. Ageing Dev. 126, 1090-1096. https://doi.org/10.1016/j.mad.2005.04.002
  30. Ji, C., Guo, W., Zhang, M., Lu, X., Ni, Y., and Guo, X. (2012). Caenorhabditis elegans ucp-4 regulates fat metabolism:suppression of ucp-4 expression induced obese phenotype and caused impairment of insulin like pathway. Gene 491, 158-164. https://doi.org/10.1016/j.gene.2011.10.001
  31. Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2, 1-10.
  32. Korshunov, S.S., Skulachev, V.P., and Starkov, A.A. (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 15-18. https://doi.org/10.1016/S0014-5793(97)01159-9
  33. Koziel, A., Sobieraj, I., and Jarmuszkiewicz, W. (2015). Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels. Am. J. Physiol. Heart Circ. Physiol. 309, H147-156. https://doi.org/10.1152/ajpheart.00759.2014
  34. Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795. https://doi.org/10.1038/nature05292
  35. Loew, L.M., Tuft, R.A., Carrington, W., and Fay, F.S. (1993). Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys. J. 65, 2396-2407. https://doi.org/10.1016/S0006-3495(93)81318-3
  36. Mao, W., Yu, X.X., Zhong, A., Li, W., Brush, J., Sherwood, S.W., Adams, S.H., and Pan, G. (1999). UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett. 443, 326-330. https://doi.org/10.1016/S0014-5793(98)01713-X
  37. Mattiasson, G., and Sullivan, P.G. (2006). The emerging functions of UCP2 in health, disease, and therapeutics. Antioxid. Redox Signal. 8, 1-38. https://doi.org/10.1089/ars.2006.8.1
  38. Mello, C., and Fire, A. (1995). DNA transformation. Methods Cell Biol 48, 451-482. https://doi.org/10.1016/S0091-679X(08)61399-0
  39. Murphy, M.P., Echtay, K.S., Blaikie, F.H., Asin-Cayuela, J., Cocheme, H.M., Green, K., Buckingham, J.A., Taylor, E.R., Hurrell, F., Hughes, G., et al. (2003). Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. J. Biol. Chem. 278, 48534-48545. https://doi.org/10.1074/jbc.M308529200
  40. Nicholls, D.G., and Locke, R.M. (1984). Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1-64. https://doi.org/10.1152/physrev.1984.64.1.1
  41. Pan, C.L., Peng, C.Y., Chen, C.H., and McIntire, S. (2011). Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons. Proc. Natl. Acad. Sci. USA 108, 9274-9279. https://doi.org/10.1073/pnas.1011711108
  42. Pfeiffer, M., Kayzer, E.B., Yang, X., Abramson, E., Kenaston, M.A., Lago, C.U., Lo, H.H., Sedensky, M.M., Lunceford, A., Clarke, C.F., et al. (2011). Caenorhabditis elegans UCP4 protein controls complex II-mediated oxidative phosphorylation through succinate transport. J. Biol. Chem. 286, 37712-37720. https://doi.org/10.1074/jbc.M111.271452
  43. Sanchis, D., Fleury, C., Chomiki, N., Goubern, M., Huang, Q., Neverova, M., Gregoire, F., Easlick, J., Raimbault, S., Levi-Meyrueis, C., et al. (1998). BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J. Biol. Chem. 273, 34611-34615. https://doi.org/10.1074/jbc.273.51.34611
  44. Sohal, R.S., and Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science 273, 59-63. https://doi.org/10.1126/science.273.5271.59
  45. Sullivan, P.G., Rippy, N.A., Dorenbos, K., Concepcion, R.C., Agarwal, A.K., and Rho, J.M. (2004). The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann. Neurol. 55, 576-580. https://doi.org/10.1002/ana.20062
  46. Talbot, D.A., Lambert, A.J., and Brand, M.D. (2004). Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Lett. 556, 111-115. https://doi.org/10.1016/S0014-5793(03)01386-3
  47. Tank, E.M., Rodgers, K.E., and Kenyon, C. (2011). Spontaneous age-related neurite branching in Caenorhabditis elegans. J. Neurosci. 31, 9279-9288. https://doi.org/10.1523/JNEUROSCI.6606-10.2011
  48. Toth, M.L., Melentijevic, I., Shah, L., Bhatia, A., Lu, K., Talwar, A., Naji, H., Ibanez-Ventoso, C., Ghose, P., Jevince, A., et al. (2012). Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system. J. Neurosci. 32, 8778-8790. https://doi.org/10.1523/JNEUROSCI.1494-11.2012
  49. Votyakova, T.V., and Reynolds, I.J. (2001). DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J. Neurochem. 79, 266-277.
  50. Yang, J.S., Nam, H.J., Seo, M., Han, S.K., Choi, Y., Nam, H.G., Lee, S.J., and Kim, S. (2011). OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One 6, e23525. https://doi.org/10.1371/journal.pone.0023525
  51. Yoneda, T., Benedetti, C., Urano, F., Clark, S.G., Harding, H.P., and Ron, D. (2004). Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J. Cell Sci. 117, 4055-4066. https://doi.org/10.1242/jcs.01275
  52. Yu, X.X., Mao, W., Zhong, A., Schow, P., Brush, J., Sherwood, S.W., Adams, S.H., and Pan, G. (2000). Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J. 14, 1611-1618. https://doi.org/10.1096/fj.14.11.1611

피인용 문헌

  1. Mitochondrial Uncoupling Attenuates Age-Dependent Neurodegeneration in C. elegans vol.40, pp.11, 2016, https://doi.org/10.14348/molcells.2017.0172
  2. 20,000 picometers under the OMM : diving into the vastness of mitochondrial metabolite transport vol.21, pp.5, 2016, https://doi.org/10.15252/embr.202050071
  3. Flavonoids mitigate neurodegeneration in aged Caenorhabditis elegans by mitochondrial uncoupling vol.8, pp.12, 2016, https://doi.org/10.1002/fsn3.1956