DOI QR코드

DOI QR Code

Performance Comparison between Localized and Non-Localized Brain Wave Monitoring Network Topology in the Medical Hospital Area

의료병원구역의 지역화와 비지역화된 뇌파 감시망 토폴로지의 성능비교

  • Jo, Jun-Mo (Dept. Electronics Engineering, Tongmyong University)
  • Received : 2016.08.09
  • Accepted : 2016.09.24
  • Published : 2016.09.30

Abstract

There are many researches related on the brain wave signals to monitor the state of human health. Especially, some patients in the medical hospital need to be monitored in case of emergencies such as a seizure, an epilepsy and so on. To support QoS of the brain wave network in the hospital is a vital issue and the Opnet simulator is used for this experiment. So the efficient network topology is required for the stability of the brain wave network service. The brain waves of the patients are collected from the sensor devices in the network. Two different sensor network topologies are suggested and simulated for the comparison of the network performance. One topology is localized and the other is non-localized network. The simulation is operated with the Opnet simulator.

사람들의 건강상태를 모니터링하기 위해 뇌파신호에 관련된 많은 연구가 진행되고 있다. 특히, 병원에 상주하는 환자들은 뇌경색, 간질 등과 같은 위급상황에 대비하여 모니터링할 필요가 있다. 뇌파 네트워크 서비스의 안정성을 요구하는 효율적인 네트워크 토폴로지가 필요하며 본 실험을 위해 OPNet 시뮬레이터를 활용하였다. 따라서, 환자들의 뇌파는 네트워크에 있는 센서장치로부터 읽어들인다. 네트워크의 성능을 비교하기위해 두 가지의 센서 네트워크 토폴로지를 제안하고 시뮬레이션하였다. 하나는 지역화된 네트워크이고 다른 하나는 비지역화된 네트워크이다. 옵넷시뮬레이터를 이용하여 시뮬레이션을 수행하였다.

Keywords

References

  1. Y.-S. Jang and D.-W. Han, "Analysis of EEG Generated from Concentration by Visual Stimulus Task," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 5, 2014, pp. 589-594. https://doi.org/10.13067/JKIECS.201.9.5.589
  2. Mehmet R. Yuce, "Implementation of wireless body area networks for healthcare systems", Sensors and Actuators, Elsevier, Vol. 162, No. 1, 2010, pp.116-129. https://doi.org/10.1016/j.sna.2010.06.004
  3. H. Alemdar, C. Ersoy, "Wireless sensor networks for healthcare: A survey", Computer Networks, Elsevier, 2010, pp.2688-2710.
  4. D. Lehmanna, P. L. Fabera, S. Tei, R. D. Pasculal-Marqui, P. Milz, and K. Kochi, "Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography," Neuroimaging, Elsevier, Vol. 60, No. 2, 2012, pp.1574-1586. https://doi.org/10.1016/j.neuroimage.2012.01.042
  5. Z. Sharef, A. Alaradi, and B. Sharef, "Performance Evaluation for WiMAX 802.16e OFDMA Physical layer", In Computational Intelligence, Communication Systems and Networks(: CICSyN), Fourth International Conference on, Washington, DC, USA, July 2012, pp. 351-355.
  6. J.-G. Park, J.-D. Choi, Y.-C. Bae, "Scientometric Analysis of Autonomous Vehicle through Paper Analysis of each Nation", J. of the Korea Institute of Electronic Communication Sciences, Vol. 8, No. 2, 2013, pp.321-328. https://doi.org/10.13067/JKIECS.2013.8.2.321
  7. S. Kim, "A Study on the attitude control of the quadrotor using neural networks", J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 9, 2014, pp.1019-1025. https://doi.org/10.13067/JKIECS.2014.9.9.1019
  8. S. Kim, H. Oh, J. Suk, and A. Tsourdos, "Coordinated trajectory planning for efficient communication relay using multiple UAVs," Control Engineering Practice, vol. 29, 2014, pp. 42-49. https://doi.org/10.1016/j.conengprac.2014.04.003