References
- C. Altafini. Minimal eventually positive realizations of externally positive systems. Automatica, 68 (2016), 140-147. https://doi.org/10.1016/j.automatica.2016.01.072
- L. Benvenuti, L. Farina, and B. D. O. Anderson. Filtering through combination of positive filters. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 46(12) (1999), 1431-1440. https://doi.org/10.1109/81.809545
- L. Farina and S. Rinaldi. Positive Linear Systems: Theory and Applications. Wiley Interscience, 2000.
- B. Nagy, M. Matolcsi, and M. Szilvasi. Order Bound for the Realization of a Combination of Positive Filters. IEEE Transactions on Automatic Control, 52(4) (2007), 724-729. https://doi.org/10.1109/TAC.2007.894540
- C. Commault and S. Mocanu. Phase-type distributions and representations: Some results and open problems for system theory. International Journal of Control, 76(6) (2003), 566-580. https://doi.org/10.1080/0020717031000114986
- C. A. O'Cinneide. On non-uniqueness of representations of phase-type distributions. Communications in Statistics. Stochastic Models, 5(2) (1989), 247-259. https://doi.org/10.1080/15326348908807108
- G. Horvath, P. Reinecke, M. Telek, and K. Wolter. Efficient Generation of PH-distributed Random. Lecture Notes in Computer Science, 7314 (2012), 271-285.
- G. Horvath, P. Reinecke, M. Telek, and K. Wolter. Heuristic representation optimization for efficient generation of PH-distributed random variates. Annals of Operations Research, (2014), 1-23.
- S. Mocanu and C. Commault. Sparse representations of phase-type distributions. Communications in Statistics. Stochastic Models, 15(4) (1999), 759-778. https://doi.org/10.1080/15326349908807561
- K. Kim. A construction method for positive realizations with an order bound. Systems & Control Letters, 61(7) (2012), 759-765. https://doi.org/10.1016/j.sysconle.2012.04.009
- K. Kim. A constructive positive realization with sparse matrices for a continuous-time positive linear system. Mathematical Problems in Engineering, 2013 (2013), 1-9.
- D. S. Huang. A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Transactions on Neural Networks, 15(2) (2004), 477-491. https://doi.org/10.1109/TNN.2004.824424
- C. A. O'Cinneide. Phase-Type Distributions and Invariant Polytopes. Advances in Applied Probability, 23(3) (1991), 515-535. https://doi.org/10.1017/S0001867800023715
- Q.-M. He, H. Zhang, and J. Xue. Algorithms for Coxianization of Phase-Type Generators. INFORMS J. on Computing, 23(1) (2011), 153-164. https://doi.org/10.1287/ijoc.1100.0383
- I. Horvath and M. Telek. A heuristic procedure for compact Markov representation of PH distributions. In ValueTools, 2014.
- C. A. O'Cinneide. Phase-type distributions: open problems and a few properties. Stochastic Models, 15(4) (1999), 731-757. https://doi.org/10.1080/15326349908807560
- D. J. Hartfiel. A simplified form for nearly reducible and nearly decomposable matrices, 1970.
- J. L.Walsh. On the location of the roots of certain types of polynomials. Transactions of American Mathematic Society, 24 (1922), 163-180. https://doi.org/10.1090/S0002-9947-1922-1501220-0
- J. M. Ortega. Numerical Analysis: A Second Course. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 1990.
- R. a. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3) (2006), 391-408. https://doi.org/10.1007/s10107-004-0560-5
- Q.-M. He and H. Zhang. A Note on Unicyclic Representations of Phase Type Distributions. Stochastic Models, 21(2-3) (2005), 465-483. https://doi.org/10.1081/STM-200057131