DOI QR코드

DOI QR Code

Algicidal Characteristics of Cashew Nut Oil against Microalgae and Development of its Mixtures with Synergistic Effects

미세조류에 대한 캐슈넛 오일의 살조활성특징과 상승효과를 가지는 혼합처리제 탐색

  • Kwak, Hwa Sook (Research Center for Eco-Friendly New Materials, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Bo Gwan (Research Center for Eco-Friendly New Materials, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Research Center for Eco-Friendly New Materials, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology)
  • 곽화숙 (한국화학연구원 의약바이오연구본부 친환경신물질연구센터) ;
  • 김보관 (한국화학연구원 의약바이오연구본부 친환경신물질연구센터) ;
  • 김진석 (한국화학연구원 의약바이오연구본부 친환경신물질연구센터)
  • Received : 2016.06.24
  • Accepted : 2016.08.30
  • Published : 2016.09.30

Abstract

This study was conducted to investigate the algicidal characteristics of cashew nut oil (CNO) and to develop CNO mixtures with other compounds having synergistic effects on the growth inhibition against a blue-green alga, Microcystis aeruginosa. Among tested CNOs, CNO with higher anacardic acid contents (Ana-A) exhibited the best algicidal activity against M. aeruginosa. Ana-A showed broad algicidal spectrum with particular greater activity against blue-green algae than green algae. Ana-A showed the greatest activity against to Oscillatoria tenuis ($IC_{50}=0.19{\mu}g\;mL^{-1}$) among the tested blue-green algae and to Chlorella vulgaris ($IC_{50}=4.54{\mu}g\;mL^{-1}$) among the tested green algae, respectively. In a mixture experiment to evaluate a chemical interaction in M. aeruginosa control, Ana-A showed a strong synergistic effect with MSB and menadione, mild synergistic effect with citric acid, and additive effect with chryspophanol, copper sulfate and quinoclamine. Taken together, our results suggest that CNO containing higher anacardic acid can be used as an eco-friendly natural algicide for selective control of blue-green algae such as M. aeruginosa and O. tenuis through an optimization of application rate and in combination with synergists such as MSB and menadione.

본 연구에서는 캐슈넛 오일의 살조활성 특징을 파악하고, 유해조류를 보다 효과적으로 제어할 수 있는 혼합처리제를 개발하기 위하여 실시하였다. 공시된 시험 추출물중 anacardic acid 함량이 상대적으로 높은 Ana-A가 남조류 M. aeruginosa에 대한 살조활성이 가장 높았다. Ana-A는 전체적으로 녹조류보다는 남조류에 대해 더 높은 살조활성을 가지면서 폭넓은 살조활성스펙트럼을 보였다. Ana-A에 대한 남조류 종간 반응에 있어서는 Oscillatoria tenuis ($IC_{50}=0.19{\mu}g\;mL^{-1}$)가 가장 민감하였고, 녹조류 중에서는 Chlorella vulgaris가 상대적으로 가장 민감한 반응을 나타내었다($IC_{50}=4.54{\mu}g\;mL^{-1}$). Ana-A와의 혼합처리를 통해 효능이 상승되는 화합물을 탐색한 결과, MSB와 menadione은 매우 강한 상승작용을, citric acid는 약간의 상승작용을, chrysophanol, copper sulfate, quinoclamine 등은 상가적 작용의 활성을 나타내었다. 종합적으로 볼 때, anacardic acid 고함유 캐슈넛 오일은 처리량의 최적화와 상승작용을 가지는 MSB 또는 menadione과 같은 화합물과의 혼합처리를 통해 M. aeruginosa 및 O. tenuis가 발생하는 현장의 선택적 제어를 위해 환경 친화적인 살조제로서 유용하게 활용될 수 있을 것 같았다.

Keywords

References

  1. Ahn, C.-Y., Lee, C.S., Choi, J.W., Lee, S. and Oh, H.-M. 2015. Global occurrence of harmful cyanobacterial blooms and N, Plimitation strategy for bloom control. Kor. J. Environ. Biol. 33(1):1-6. (In Korean) https://doi.org/10.11626/KJEB.2015.33.1.001
  2. Aida, M., Ikeda, H., Itoh, K. and Usui, K. 2006. Effects of five rice herbicides on the growth of two threatened aquatic ferns. Ecotox. Environ. Safe. 63:463-468. https://doi.org/10.1016/j.ecoenv.2005.02.010
  3. Begum, P., Hashidoko, Y., Islam, Md.T., Ogawa, Y. and Tahara, S. 2002. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides. Z. Naturforsch. 57c:874-882.
  4. Cantrell, C.L., Mamonov, L.K., Ryabushkina, N., Kustova, T.S., Fischer, N.H., et al. 2007. Bioassay-guided isolation of anti-algal constituents from Inula helenium and Limonium myrianthum. ARKIVOC 7:65-75.
  5. Chelikani, R., Kim, Y.H., Yoon, D.Y. and Kim, D.S. 2009. Enzymatic polymerization of natural anacardic acid and antibiofouling effects of polyanacardic acid coatings. Appl. Biochem. Biotech. 157(2):263-277. https://doi.org/10.1007/s12010-008-8284-2
  6. Choi, G.J., Lee, S.W., Choi, Y.H., Jang, K.S., Kim, J.S., et al. 2004. Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews. Crop Prot. 23(12):1215-1221. https://doi.org/10.1016/j.cropro.2004.05.005
  7. Choi, J.S., Hwang, H.J., Seo, B.R., Kim, J.D., Jang, H.W., et al. 2009. Isolation and identification of five sesquiterpene compounds having algicidal activity from medicinal plants. Kor. J. Weed Sci. 29(2):121-130. (In Korean)
  8. Choi, Y.H., Kim, J.C., Ahn, J.K., Ko, S.Y., Kim, D.H., et al. 2008. Anti-biofouling behavior of natural unsaturated hydrocarbon phenols impregnated in PDMS matrix. J. Ind. Eng. Chem. 14:292-296. https://doi.org/10.1016/j.jiec.2008.01.012
  9. Colby, S.R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:20-22. https://doi.org/10.2307/4041058
  10. Dayan, F.E., Cantrell, C.L. and Duke, S.O. 2009. Natural products in crop protection. Bioorgan. Med. Chem. 17(12):4022-4034. https://doi.org/10.1016/j.bmc.2009.01.046
  11. Duke, S.O., Dayan, F.E., Rimando, A.M., Schrader, K.K., Aliotta, G., et al. 2002. Chemicals from nature for weed management. Weed Sci. 50:138-151. https://doi.org/10.1614/0043-1745(2002)050[0138:IPCFNF]2.0.CO;2
  12. Haghjou, M.M., Colville, L. and Smirnoff, N. 2014. The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools. Plant Physiol. Biochem. 84:96-104. https://doi.org/10.1016/j.plaphy.2014.08.024
  13. Haider, S., Naithani, V., Viswanathan, P.N. and Kakkar, P. 2003. Cyanobacterial toxins: a growing environmental concern. Chemosphere 52:1-21. https://doi.org/10.1016/S0045-6535(03)00032-8
  14. Hamad, F.B. and Mubofu, E.B. 2015. Potential biological applications of bio-based anacardic acids and their derivatives. Int. J. Mol. Sci. 16:8569-8590. https://doi.org/10.3390/ijms16048569
  15. Himejima, M. and Kubo, I. 1991. Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J. Agric. Food Chem. 39:418-421. https://doi.org/10.1021/jf00002a039
  16. Jancula, D. and Marsalek, B. 2011. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85:1415-1422. https://doi.org/10.1016/j.chemosphere.2011.08.036
  17. Kim, J.S., Kim, J.C., Lee, S., Lee, B.H. and Cho, K.Y. 2006. Biological activity of L-2-azetidinecarboxylic acid, isolated from Polygonatum odoratum var. pluriflorum, against several alga. Aquat. Bot. 85:1-6. https://doi.org/10.1016/j.aquabot.2006.01.003
  18. Kubo, I., Masuoka, N., Ha, T.J. and Tsujimoto, K. 2006. Antioxidant activity of anacardic acids. Food Chem. 99:555-562. https://doi.org/10.1016/j.foodchem.2005.08.023
  19. Kubo, I., Ochi, M., Vieira, P.C. and Komatsu, S. 1993. Antitumor agents from the cashew (Anacardium occidentale) apple juice. J. Agric. Food Chem. 41:1012-1015. https://doi.org/10.1021/jf00030a035
  20. Lee, H.K., Park, J.E., Ryu, G.H, Lee, J.O. and Park, Y.S. 1993. Freshwater algae occurred in paddy rice fields. VI. Ecology of suspensible green algae and soil-flakes and their chemical control. Kor. J. Weed Sci. 13(2):96-103. (In Korean)
  21. Lubi, M.C. and Thachil, E.T. 2000. Cashew nut shell liquid (CNSL)-A versatile monomer for polymer synthesis. Des. Monomers Polym. 3:123-153. https://doi.org/10.1163/156855500300142834
  22. Muroi, H. and Kubo, I. 1993. Bactericidal activity of anacardic acids against Streptococcus mutans and their potentiation. J. Agric. Food Chem. 41:1780-1783. https://doi.org/10.1021/jf00034a049
  23. Muroi, H., Nihei, K., Tsujimoto, K. and Kubo, I. 2004. Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorgan. Med. Chem. 12(3):583-587. https://doi.org/10.1016/j.bmc.2003.10.046
  24. Nusch, E.A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. (Ergebn. Limnol.) 14:14-36.
  25. Ozdemir, Z. 2009. Growth inhibition of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato by olive mill wastewaters and citric acid. J. Plant Pathol. 91(1):221-224.
  26. Prithiviraj, B., Manickam, M., Singh, U.P. and Ray, A.B. 1997. Antifungal activity of anacardic acid, a naturally occurring derivative of salicylic acid. Can. J. Bot. 75(1):207-211. https://doi.org/10.1139/b97-021
  27. Rea, A.I., Schmidt, J.M., Setzer, W.N., Sibanda, S., Taylor, C., et al. 2003. Cytotoxic activity of Ozoroa insignis from Zimbabwe. Fitoterapia 74:732-735. https://doi.org/10.1016/j.fitote.2003.08.007
  28. Schrader, K.K. 2003. Natural algicides for the control of cyanobacterial-related off-flavor in catfish aquaculture. ACS Symposium Series 848:195-208.
  29. Schultz, D.J., Olsen, C., Cobbs, G.A., Stolowich, N.J. and Parrott, M.M. 2006. Bioactivity of anacardic acid against Colorado potato beetle (Leptinotarsa decemlineata) larvae. J. Agric. Food Chem. 54(20):7522-7529. https://doi.org/10.1021/jf061481u
  30. Shobha, S.V. and Ravindranath, B. 1991. Supercritical carbon dioxide and solvent extraction of the phenolic lipids of cashew nut (Anacardium occidentale) shells, J. Agric. Food Chem. 39:2214-2217. https://doi.org/10.1021/jf00012a022
  31. Sin, J.-G. and Im, C.S. 2000. A study on the water quality simulation in the midstream and downstream of Geum-river. J. Kor. Water Resour. Assoc. 33(2):145-157. (In Korean)
  32. Sullivan, J.T., Richards, C.S., Lloyd, H.A. and Krishna, G. 1982. Anacardic acid: molluscicide in cashew nut shell liquid. Planta Med. 44(3):175-177. https://doi.org/10.1055/s-2007-971434