DOI QR코드

DOI QR Code

Viability Test and Bulk Harvest of Marine Phytoplankton Communities to Verify the Efficacy of a Ship's Ballast Water Management System Based on USCG Phase II

USCG Phase II 선박평형수 성능 평가를 위한 해양 식물플랑크톤군집 대량 확보 및 생물사멸시험

  • Hyun, Bonggil (Ballast Water Research Center, Korea Institute of Ocean Science & Technology) ;
  • Baek, Seung Ho (South Sea Institute, Korea Institute of Ocean Science & Technology) ;
  • Lee, Woo Jin (Ballast Water Research Center, Korea Institute of Ocean Science & Technology) ;
  • Shin, Kyoungsoon (Ballast Water Research Center, Korea Institute of Ocean Science & Technology)
  • 현봉길 (한국해양과학기술원 선박평형수연구센터) ;
  • 백승호 (한국해양과학기술원 남해연구소) ;
  • 이우진 (한국해양과학기술원 선박평형수연구센터) ;
  • 신경순 (한국해양과학기술원 선박평형수연구센터)
  • Received : 2016.05.24
  • Accepted : 2016.08.29
  • Published : 2016.08.31

Abstract

The type approval test for USCG Phase II must be satisfied such that living natural biota occupy more than 75 % of whole biota in a test tank. Thus, we harvested a community of natural organisms using a net at Masan Bay (eutrophic) and Jangmok Bay (mesotrophic) during winter season to meet this guideline. Furthermore, cell viability was measured to determine the mortality rate. Based on the organism concentration volume (1 ton) at Masan and Jangmok Bay, abundance of ${\geq}10$ and $<50{\mu}m$ sized organisms was observed to be $4.7{\times}10^4cells\;mL^{-1}$and $0.8{\times}10^4cells\;mL^{-1}$, and their survival rates were 90.4 % and 88.0 %, respectively. In particular, chain-forming small diatoms such as Skeletonema costatum-like species were abundant at Jangmok Bay, while small flagellate ($<10{\mu}m$) and non chain-forming large dinoflagellates, such as Akashiwo sanguinea and Heterocapsa triquetra, were abundant at Masan Bay. Due to the size-difference of the dominant species, concentration efficiency was higher at Jangmok Bay than at Masan Bay. The mortality rate in samples treated by Ballast Water Treatment System (BWMS) (Day 0) was a little lower for samples from Jangmok Bay than from Masan Bay, with values of 90.4% and 93%, respectively. After 5 days, the mortality rates in control and treatment group were found to be 6.7% and >99%, respectively. Consequently, the phytoplankton concentration method alone did not easily satisfy the type approval standards of USCG Phase II ($>1.0{\times}10^3cells\;mL^{-1}$ in 500-ton tank) during winter season, and alternative options such as mass culture and/or harvesting system using natural phytoplankton communities may be helpful in meeting USCG Phase II biological criteria.

본 연구는 USCG phase-II의 형식승인 기준인 자연상태 생물군집의 75 % 이상 유지하여야 하는 평가체계에 대비하여 자연생물군집 농축 및 선박평형수관리시스템(Ballast Water Management System, BWMS) 처리 전 후 생물사멸시험을 실시하였다. 자연 식물플랑크톤군집의 농축 조사는 중영양수계인 장목만과 부영양화수계의 마산만에서 동계에 수행하였다. 장목만과 마산만에서 1톤 기준으로 생물을 농축하였을 경우, $10-50{\mu}m$ 크기 생물 현존량은 $4.7{\times}10^4cells\;mL^{-1}$$0.8{\times}10^4cells\;mL^{-1}$ 이었고, 농축생물의 생존율은 90.4 %와 88.0 %로 각각 나타났다. 특히 장목만에서는 Skeletonema costatum-like species 같은 체인을 형성하는 소형 규조류가 극우점한 반면, 마산만에서는 $<10{\mu}m$보다 작은 편모조류 및 체인을 형성하지 않는 대형 와편모조류(Akashiwo sanguinea, Heterocapsa triquetra)가 우점하였다. 이와 같은 우점종 세포크기의 차이로 장목만 농축효율이 마산만보다 높게 나타났다. BWMS 장비를 통과한 처리 당일 생물 사멸률은 장목만이 90.4 %로, 마산만의 93 %보다 약간 낮았고, 장목만에서 BWMS 처리 5일 경과 후, 대조군의 대상생물의 사멸률은 6.7 %로 나타났다. 처리군에서는 >99 %로 대부분 사멸되어, 시험생물로서의 적용 가능성을 확인할 수 있었다. 결과적으로 동계와 같이 해역내 생물량이 낮을 경우, 주간 8시간 수행한 네트의 생물농축만으로 는 USCG Phase II의 형식승인 기준인 500톤 탱크에 $1.0{\times}10^3cells\;mL^{-1}$ 이상으로 자연생물 개체수 밀도를 충족하기는 쉽지 않다는 것을 파악하였고, 이를 보완하기 위해서는 일정기간 자연생물을 대량 배양 및 채집할 수 있는 시스템 도입이 필요할 것으로 판단된다.

Keywords

References

  1. Baek, S. H. and K. Shin(2015), A staining method to determine marine microplanktonic organism viability and investigate the efficacy of a ship's ballast water treatment system, Journal of Korea Academia Industrial Cooperation Society, Vol. 16, pp. 4328-4334. https://doi.org/10.5762/KAIS.2015.16.6.4328
  2. Garvey, M., B. Moriceau and U. Passow(2007), Applicability of the FDA assay to determine the viability of marine phytoplankton under different environmental conditions, Marine Ecological Progress Series, Vol. 352, pp. 17-26. https://doi.org/10.3354/meps07134
  3. Hyun, B., K. Shin, H. C. Chung, S. -Y. Choi, M. -C. Jang, W. -J. Lee and K. -H. Choi(2014), Application of Neutral Red Staining Method to Distinguishing Live and Dead Marine Plankton for the Investigation of Efficacy of Ship's Ballast Water Treatment System, Journal of the Korean Society of Oceanography, Vol. 19(4), pp. 223-231.
  4. IMO(2001), Report on the ballast water treatment standards workshop, In 1st International ballast water treatment standards workshop, IMO London, pp. 28-30 March, http://globallast.Imo.org/workshopreport.htm, 2001.
  5. Kang, J. H., B. -G. Hyun and K. Shin(2010), Phytoplankton viability in ballast water from international commercial ships berthed at ports in Korea, Marine Pollution Bulltin Mar. Pollut. Bulletin, Vol. 60, pp. 230-237. https://doi.org/10.1016/j.marpolbul.2009.09.021
  6. Kim, E. -C.(2012), Consideration on the Ballast Water Treatment System Technology and its Development Strategies, Journal of the Korean Society for Marine Environmental Engineering, Vol. 15(4), pp. 349-356. https://doi.org/10.7846/JKOSMEE.2012.15.4.349
  7. Miller, A. W., M. Frazier, G. E. Smith, E. S. Perry, G. M. Ruiz and M. N. Tamburri(2011), Enumerating sparse organisms in ships' ballast water: Why counting to 10 is not so easy, Environmental Science and Technology, Vol. 45, pp. 3539-3546. https://doi.org/10.1021/es102790d
  8. Tang, Y. Z. and F. C. Dobbs(2007), Green autofluorescence in dionflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies. Applied Environmental Microbiology, Vol. 73, pp. 2306-2313. https://doi.org/10.1128/AEM.01741-06