DOI QR코드

DOI QR Code

가중치 세분화 기반의 로지스틱 회귀분석 모델

Fine-Grain Weighted Logistic Regression Model

  • 투고 : 2016.07.25
  • 심사 : 2016.08.26
  • 발행 : 2016.09.25

초록

로지스틱 회귀분석은 오랫동안 다양한 분야에서 예측을 위한 기술 혹은 변수 간의 관계를 설명하기 위하여 사용되어 왔다. 로지스틱 회귀분석에서 각 속성은 목적 값에 대한 중요도를 가지는데 본 연구에서는 이를 세분화하여 각 속성의 값에 따라서 중요도를 부여하는 새로운 방법을 제시한다. 점진적 하강법을 이용하여 알고리즘의 성능을 최대화하는 각 속성값 가중치의 값을 계산하였다. 제안된 방법은 다양한 데이터를 이용하여 실험하였고 본 연구의 속성값 기반 로지스틱 회귀분석 방법은 기존의 로지스틱 회귀분석보다 우수한 학습 능력을 보임을 알 수 있었다.

Logistic regression (LR) has been widely used for predicting the relationships among variables in various fields. We propose a new logistic regression model with a fine-grained weighting method, called value weighted logistic regression, by assigning different weights to each feature value. A gradient approach is utilized to obtain the optimal weights of feature values. We conduct experiments on several data sets and the experimental results show that the proposed method shows meaningful improvement in prediction accuracy.

키워드

참고문헌

  1. Atkeson, Christopher G., Andrew W. Moore, and Stefan Schaal. "Locally weighted learning for control." Lazy learning. Springer Netherlands, 1997. 75-113.
  2. Cleveland, William S., and Susan J. Devlin. "Locally weighted regression: an approach to regression analysis by local fitting." Journal of the American Statistical Association 83.403 (1988): 596-610. https://doi.org/10.1080/01621459.1988.10478639
  3. Goeman, Jelle, Rosa Meijer, and Nimisha Chaturvedi. "L1 and L2 penalized regression models." (2014).
  4. Hosmer D W, Lemesbow S. Goodness of fit tests for the multiple logistic regression model. Communications in Statistics-Theory and Methods, 1980, 9(10): 1043-1069. https://doi.org/10.1080/03610928008827941
  5. Hosmer Jr, David W., and Stanley Lemeshow. Applied logistic regression. John Wiley & Sons, 2004.
  6. Kurgan, Lukasz, and Krzysztof J. Cios. "CAIM discretization algorithm." Knowledge and Data Engineering, IEEE Transactions on Knowledge and Data Engineering, 145-153. (2004):
  7. Menard, Scott. Applied logistic regression analysis. Vol. 106. Sage, 2002.
  8. Zhang, Lijun, et al. "Efficient Online Learning for Large-Scale Sparse Kernel Logistic Regression." AAAI. 2012.
  9. Zhu, Ji, and Trevor Hastie. "Kernel logistic regression and the import vector machine." Journal of Computational and Graphical Statistics (2005).
  10. https://archive.ics.uci.edu/ml/datasets.html