초록
로지스틱 회귀분석은 오랫동안 다양한 분야에서 예측을 위한 기술 혹은 변수 간의 관계를 설명하기 위하여 사용되어 왔다. 로지스틱 회귀분석에서 각 속성은 목적 값에 대한 중요도를 가지는데 본 연구에서는 이를 세분화하여 각 속성의 값에 따라서 중요도를 부여하는 새로운 방법을 제시한다. 점진적 하강법을 이용하여 알고리즘의 성능을 최대화하는 각 속성값 가중치의 값을 계산하였다. 제안된 방법은 다양한 데이터를 이용하여 실험하였고 본 연구의 속성값 기반 로지스틱 회귀분석 방법은 기존의 로지스틱 회귀분석보다 우수한 학습 능력을 보임을 알 수 있었다.
Logistic regression (LR) has been widely used for predicting the relationships among variables in various fields. We propose a new logistic regression model with a fine-grained weighting method, called value weighted logistic regression, by assigning different weights to each feature value. A gradient approach is utilized to obtain the optimal weights of feature values. We conduct experiments on several data sets and the experimental results show that the proposed method shows meaningful improvement in prediction accuracy.