DOI QR코드

DOI QR Code

Process Optimization for Reduction of Waste Acids of Electropolishing Solution using Round Bus Bar

구형 부스바를 이용한 전해연마액의 폐산 폐기물 감소를 위한 공정 최적화

  • Kim, Soo Han (Department of Chemical Engineering, Kwangwoon University) ;
  • Cho, Jaehoon (Green Process and Materials R&D Group, Korea Institute of Industrial Technology(KITECH)) ;
  • Park, Chulhwan (Department of Chemical Engineering, Kwangwoon University)
  • 김수한 (광운대학교 화학공학과) ;
  • 조재훈 (한국생산기술연구원 그린공정소재그룹) ;
  • 박철환 (광운대학교 화학공학과)
  • Received : 2016.07.27
  • Accepted : 2016.08.11
  • Published : 2016.08.31

Abstract

In this study, we attempted to reduce the generation of waste acids in the electropolishing process by improving the current efficiency. The optimum conditions of the electropolishing process when using the round bus bar were determined by the Taguchi method. The current density, polishing time, electrolyte temperature and flow rate were selected as the control factors for the current efficiency in the electropolishing process. An orthogonal array was created by considering three levels for each factor and experiments were carried out. The larger-the-better SN ratios were calculated by the Taguchi method. The current density was the most important factor affecting the current efficiency and the polishing time was the least important one. The optimum conditions to minimize the generation of waste acids were a current density of $45A/dm^2$, polishing time of 4 min, electrolyte temperature of $65^{\circ}C$ and flow rate of 7 L/min. The results of the ANOVA confirmed that the effects of the current density, electrolyte temperature and flow rate are significant at the 95% confidence level. The increase in the contact area and contact force afforded by using the round bus bar improved the current efficiency which, in turn, reduced the amount of waste acids generated. Further research is planned to investigate the effect of the type of bus bar on the current efficiency.

본 연구에서는 전류효율 향상을 통하여 전해연마 공정 중 발생하는 폐산 폐기물 발생량을 감소시키고자 하였다. 구형 부스바와 Taguchi 기법을 이용하여 전해연마 공정의 최적 조건을 도출하였다. 전해연마 공정 중 전류효율에 영향을 미치는 제어인자로 전류밀도, 전해연마 시간, 전해액 온도, 유량을 선택하였다. 각 제어인자에 대하여 3수준을 고려하여 직교 배열표를 작성하여 실험을 수행하였다. Taguchi 기법에 따라 망대특성 SN비를 산출한 결과 전류밀도가 가장 큰 영향을 미치고 전해연마 시간이 가장 적은 영향을 미치는 것을 확인하였다. 폐산 폐기물 발생량을 최소화할 수 있는 최적 조건은 전류밀도 $45A/dm^2$,전해연마 시간 4 min, 전해액 온도 $65^{\circ}C$, 유량 7 L/min였다. 분산분석 결과 전류밀도, 전해액 온도, 유량이 신뢰수준 95%에서 유의함을 확인하였다. 구형 부스바 사용으로 접촉 면적 및 접촉력 증가로 전류효율이 향상되어 폐산 폐기물 발생량을 감소시킬 수 있었다. 부스바의 형태(선 접점 부스바, 반구형 면 접점 부스바, 구형 면 접점 부스바)에 따른 전류효율의 영향과 관련한 비교 연구가 향후 진행될 예정이다.

Keywords

References

  1. H. T. Yeom, J. S. Lee, Plating and surface treatment, pp. 77-119, Moonyeondang, 1999.
  2. R. Rokicki, T. Hryniewicz, "Enhanced oxidation-dissolution theory of electropolishing", Transactions of the IMF, vol. 90, no. 4, pp. 188-196, 2012. DOI: http://dx.doi.org/10.1179/0020296712z.00000000031
  3. A. P. Davis, C. Bernstein, P. M. Gietka, Waste minimization in electropolishing: Process control, Proc. of 27th Mid-Atlantic Industrial Waste Conference: Hazardous and Industrial Wastes, pp. 62-71, 1995.
  4. Japan's vocational training center, Plating technology: Electroplating, pp. 31-38, Sehwa, 1996.
  5. J. A. Ghani, I. A. Choudhury, H. H. Hassan, "Application of Taguchi method in the optimization of end milling parameters", Journal of Materials Processing Technology, vol. 145, no. 1, pp. 84-92, 2002. DOI: http://dx.doi.org/10.1016/S0924-0136(03)00865-3
  6. F. Nazneen, P. Galvin, D. W. Arrigan, M. Thompson, P. Benvenuto, G. Herzog, "Electropolishing of medical-grade stainless steel in preparation for surface nano-texturing", Journal of Solid State Electrochemistry, vol. 16, no. 4, pp. 1389-1397, 2012. DOI: http://dx.doi.org/10.1007/s10008-011-1539-9
  7. D. Landolt, "Fundamental aspects of electropolishing", Electrochimica Acta, vol. 32, no. 1, pp. 1-11, 1987. DOI: http://dx.doi.org/10.1016/0013-4686(87)87001-9
  8. E. S. Lee, "Machining characteristics of the electropolishing of stainless steel(STS316L)", The International Journal of Advanced Manufacturing Technology, vol. 16, no. 8, pp. 591-599, 2000. DOI: http://dx.doi.org/10.1007/s001700070049
  9. M. Paunovic, Modern electroplating: Part A. Electrochemical aspects, pp. 13-16, John Wiley & Sons, Inc, 2000.
  10. S. H. Park, J. W. Kim, Modern design of experiments using Minitab, pp. 529-553, Minyoungsa, 2013.
  11. M. Nalbant, H. Gokkaya, G. Sur. "Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning", Materials & design, vol. 28, no. 4, pp. 1379-1385, 2007. DOI: http://dx.doi.org/10.1016/j.matdes.2006.01.008
  12. Y. W. Cho, M. K. Park, "The parameter optimization decision of surface roughness using Taguchi method", Journal of the Society of Korea Industrial and Systems Engineering, Vol 21, no. 46, pp. 221-227, 1998.
  13. J. E. Chung J. K. Ahn, "A Study of robust design of FCM gasket using Taguchi method", Journal of the Korea Academia-Industrial cooperation Society, vol. 14, no. 7, pp. 3177-3183, 2013. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.7.3177
  14. Y. S. Kim, K. S. Chang, "Impact toughness improvement of an undercarriage track shoe using the Taguchi orthogonal array experiment", Journal of the Korea Academia-Industrial Cooperation Society, vol. 16, no. 3, pp. 1611-1619, 2015. https://doi.org/10.5762/KAIS.2015.16.3.1611