DOI QR코드

DOI QR Code

Fabrication of Metal Discs Using Molten Tin and Brass Droplets

주석과 황동 용탕 드롭렛을 이용한 디스크형 응고체 제조

  • Song, Jeongho (Department of Materials Science and Engineering, University of Seoul) ;
  • Lee, Tae-Kyeong (Department of Mechanical and Information Engineering, University of Seoul) ;
  • Rhee, Gwang-Hoon (Department of Mechanical and Information Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 송정호 (서울시립대학교 신소재공학과) ;
  • 이태경 (서울시립대학교 기계정보공학과) ;
  • 리광훈 (서울시립대학교 기계정보공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2016.05.27
  • Accepted : 2016.08.11
  • Published : 2016.08.31

Abstract

This paper proposes a simple process to fabricate tin and brass metal discs with a large surface area from molten droplets for the wet-refining process of nonferrous metals by assuming they have precious metal elements. To optimize the droplet condition in a graphite crucible, the appropriate nozzle size was determined using a simulation program (STAR-CCM+) by varying the diameters (0.5, 1.0, and 2.0 mm). The simulation results showed that both tin and brass do not fall out with a 0.5 mm diameter nozzle but they do fall out in continuous ribbon mode with a 2.0 mm nozzle. Only the 1.0mm nozzle was expected to fabricate droplets. Finally, solidified metal discs were fabricated successfully with the 1.0 mm nozzle within 10 minutes by impacting the droplets with a cooling water flowing over a Ti plate placed at the $40^{\circ}$ falling direction. The weight, average thickness, and surface area of the tin discs were 0.15 g, $107.8{\mu}m$, and $3.71cm^2$, respectively. The brass discs were 1.16 g, $129.15{\mu}m$, and $23.98cm^2$, respectively. The surface area of the tin and brass disc were 8.2 and 17.6 times the size of the tin and brass droplets, respectively. This process for precious metal extraction is expected to save cost and time.

유가금속이 혼합된 비철합금의 습식 제련의 용이성을 위해서, 주석과 황동 용탕으로부터 표면적이 넓은 평판형 응고체를 제조하는 공정을 제안하였다. 금속 용탕을 그라파이트 도가니의 노즐로부터 드롭렛(droplet) 형상으로 떨어뜨릴 수 있도록 STAR-CCM+ 프로그램을 이용하여 노즐의 직경을 0.5, 1.0, 2.0 mm로 변화시키며 시뮬레이션을 진행하였다. 주석과 황동 모두 0.5 mm 노즐에서는 융액이 흐르지 않았으며, 2.0 mm 에서는 연속적인 분사가 진행되었고, 1.0 mm에서는 목적한 드롭렛이 형성되었다. 시뮬레이션 결과를 바탕으로 목적한 드롭렛이 형성되는 1.0 mm 노즐을 이용하여 용융된 주석, 황동 용탕 드롭렛을 $40^{\circ}$의 경사를 가진 티타늄 충격판에 충돌시켜 표면적이 증가된 디스크형 응고체를 10분 내에 성공적으로 제조하였다. 평면 응고체의 무게, 평균두께, 표면적은 주석의 경우 각각 0.15 g, $107.8{\mu}m$, $3.71cm^2$ 이었으며, 황동의 경우 1.16 g, $129.15{\mu}m$, $23.98cm^2$로 확인되었다. 형성된 응고체의 표면적은 드롭렛에 대비하여 각각 8.2, 17.6배로 증가되었다. 제안된 공정을 이용하여 다른 유가금속 합금의 표면적 향상 공정에도 비용과 시간 절감이 기대되었다.

Keywords

References

  1. R. Sari, S. Hammoudeh, U. Soytas, "Dynamics of oil price, precious metal prices, and exchange rate", Energy Economics, Vol.32, No.2 pp. 351-362, 2010. DOI: http://dx.doi.org/10.1016/j.eneco.2009.08.010
  2. S. M. Shin, N. H. Kim, J. S. Sohn, D. H. Yang, Y. H. Kim, "Development of a metal recovery process from Li-ion battery wastes", Hydrometallurgy, Vol.79, No.3 pp. 172-181, 2005. DOI: http://dx.doi.org/10.1016/j.hydromet.2005.06.004
  3. E. Tully, B. M. Lucey, "A power GARCH examination of the gold market", Research in International Business and Finance, Vol.21, No.2 pp. 316-325, 2007. DOI: http://dx.doi.org/10.1016/j.ribaf.2006.07.001
  4. P. P. Sheng, T. H. Etsell, "Recovery of gold from computer circuit board scrap using aqua regia", Waste Management & Research, Vol.25, No.4 pp. 380-383, 2007. DOI: http://dx.doi.org/10.1177/0734242X07076946
  5. X. Tang, G. Wang, Y. Zheng, Y. Zhang, K. Peng, L. Guo, S. Wang, M. Zeng, J. Dai, G. Wang, X. Zhou, "Ultra rapid fabrication of p=type Li-doped $Mg_2Si_{0.4}Sn_{0.6}$ Synthesized by unique melt spinning method", Scripta Materialia, Vol.115, No.1 pp. 52-56, 2016. DOI: http://dx.doi.org/10.1016/j.scriptamat.2015.12.031
  6. S. Zhong, L. Qi, J. Luo, H. S. Zuo, X. Hou, H. Li, "Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology", Journal of materials processing technology, Vol.214, No.12 pp. 3089-3097, 2014. DOI: http://dx.doi.org/10.1016/j.jmatprotec.2014.07.012
  7. J. Luo, L. H. Qi, J. M. Zhou, X. H. Hou, H. J. Li, "Modeling and characterization of metal droplets generation by using a pneumatic drop-on-demand generator", Journal of Materials Processing Technology, Vol.212, No.3 pp. 718-726, 2012. DOI: http://dx.doi.org/10.1016/j.jmatprotec.2011.04.014
  8. M. R. Davidson, J. J. C. White, "Numerical prediction of shear-thinning drop formation", Third International conference on CFD in the Minerals and Process Industries, pp. 10-12, 2013.
  9. White F. M. Viscous fluid flow, p.59, McGraw-Hill Education, 1979.
  10. C. W. Hirt, B. D. Nichols, "Volume of fluid(VOF) Method dynamic of free boundary", Journal of Computational Physics, Vol.39, pp. 201-205, 1981. DOI: http://dx.doi.org/10.1016/0021-9991(81)90145-5
  11. J. U. Brackbill, D. Kothe, C. Zemach, "A continuum method for modeling of surface tension", Journal of Computational Physics, Vol.100, pp. 335-354, 1992. DOI: http://dx.doi.org/10.1016/0021-9991(92)90240-Y
  12. N. Eustathopoulos, "Wetting by Liquid Metals-Application in Materials Processing : The Contribution of the Grenoble Group", Metals, Vol.5, No.1 pp. 350-370, 2015. DOI: http://dx.doi.org/10.3390/met5010350
  13. E. Bourasseu, A. A. Homman, O. Durand, A. Ghoufi, P. Malfret, "Calculation of the surface tension of liquid copper from atomistic Monte Carlo simulations", The european physical journal B, Vol.86, pp. 251-258, 2013. DOI: http://dx.doi.org/10.1140/epjb/e2013-40226-9
  14. S. Sharafat, N. Ghoniem, "Summary of Thermo-Physical Properties of Sn, And Compounds of Sn-H, Sn-O, Sn-C, Sn-Li, and Sn-Si And Comparison of Properties of Sn, Sn-Li, Li, and Pb-Li", University of California UCLA-UCMEP-00-31, pp. 1-51, 2000.