DOI QR코드

DOI QR Code

Effectiveness Analysis and Profile Design Automation Tool Implementation for The Mass Production Weapon System Environmental Stress Screening Test

양산 무기체계 환경 부하 선별 시험 효과도 분석 및 프로파일 설계 자동화 도구 구현

  • Received : 2016.07.20
  • Accepted : 2016.08.11
  • Published : 2016.08.31

Abstract

There are various system defects from weapons manufacturing due to the numerous production processes and various production environments. The first kind of defect is patent defects, which can be detected by visual inspection, functional testing, and existing quality control procedures during the manufacturing process. The second kind is latent defects, which cannot be detected though existing quality management approaches because of the complexity of the system and manufacturing process. To minimize the initial defect problems, environmental stress screening (ESS) is needed to detect the defects, remove them, and improve the product conditions based on the environmental stress conditions of temperature and vibration. We implemented a tool for quantitative ESS effectiveness analysis and profile design automation based on MIL-HDBK-344 and verified it using six scenarios with different temperature stress, vibration stress, and test designs.

현대 무기체계 제조를 위해 적용되는 수많은 생산 기술과 다양한 공정 환경으로 인해 다양한 결함이 무기체계 제조공정에 유입되고 있다. 이렇게 제조공정에 유입되는 결함 중 육안 검사, 기능 시험 등 기존 품질 관리 절차를 통해 검출할 수 있는 "명백결함(Patent Defect)"과 무기체계 복잡성과 제조공정의 복잡도로 기존 품질 관리 방식으로 검출이 제한되는 "잠재결함(Latent Defect)" 2가지 종류가 있다. 이러한 초기 결함 문제를 최소화하기 위해 무기체계 생산공정 중 유입된 결함요소를 환경부하(온도, 진동)를 활용하여 결함검출/제거/개선하기 위해 환경 부하 선별(ESS : Environmental Stress Screening) 시험을 수행해야 한다. 본 논문은 국내 무기체계 제조업체에서 정량적 환경 부하 선별 시험 설계의 어려움을 최소화하기 위해 MIL-HDBK-344(Environmental Stress Screening of Electronic Equipment)의 수학적 모델을 기반으로 정량적 환경 부하 선별시험 효과도 분석 및 프로파일 자동화 도구를 구현하였으며, 6가지(온도부하변수 3가지(온도범위/온도변화율/허용 잔류결함밀도), 진동부하변수 2가지(부하크기/허용 잔류결함밀도), 시험설계변수 1가지(허용 시험시간)) 시나리오를 통해 구현된 도구 유효성을 확인했다.

Keywords

References

  1. O'Connor, Patrick, and Andre Kleyner, "Practical reliability engineering", John Wiley & Sons, chapter 2, 2011. DOI: http://dx.doi.org/10.1002/9781119961260
  2. MIL-HDBK-344A, "Environmental Stress Screening of Electronic Equipment", chapter 3-5, 1993.
  3. MIL-HDBK-2164A. "Environmental Stress Screening Process of Electronic Equipment", chapter 4, 1996.
  4. MIL-HDBK-781A, "Test Methods, Plans, and Environments for Engineering, Development Qualification, and Production", chapter 5, 1996.
  5. Jang-Eun Kim, Bo-Hyun Shim, "A study on Mass production stage Tank Battle Management System Environmental Stress Screening test method and app. lication improvement based on Production process data", Journal of the Korean Society for Quality Management, vol. 43, no. 3. pp. 273-288, 2015. DOI: http://dx.doi.org/10.7469/JKSQM.2015.43.3.273
  6. H. Qi, M. Pecht, "Plastic Ball Grid Array Solder Joint Reliability Assessment Under Combined Thermal Cycling and Vibration Loading Conditions", University of Maryland, chapter 3-4, 2006.
  7. Czerniel, Stan, and Lou Gullo, "ESS/HASS effectiveness model for yield and screen profile optimization" Reliability and Maintainability Symposium (RAMS), IEEE, pp. 1-7 2015. DOI: http://dx.doi.org/10.1109/rams.2015.7105124
  8. Ohring Milton, Lucian Kasprzak, "Reliability and failure of electronic materials and devices". Academic Press, chapter 3, 2014.
  9. RADC TR-86-139, "RADC Guide to Environmental Stress Screening", chapter 4, 1986.