DOI QR코드

DOI QR Code

Numerical Analysis on Shock Waves Influence Generated by Supersonic Jet Flow According to Working Fluids

작동유체에 따른 초음속 제트유동에 의해 생성되는 충격파 영향에 관한 수치해석

  • 정종길 (가천대학교 대학원 기계공학과) ;
  • 윤준규 (가천대학교 기계공학과) ;
  • 임종한 (가천대학교 기계공학과)
  • Received : 2016.04.28
  • Accepted : 2016.07.07
  • Published : 2016.07.31

Abstract

Supersonic jet technology using high pressures has been popularly utilized in diverse industrial and engineering areas related to working fluids. In this study, to consider the effects of a shock wave caused by supersonic jet flow from a high pressure pipe, the SST turbulent flow model provided in the ANSYS FLUENT v.16 was applied and the flow characteristics of the pressure ratio and Mach number were analyzed in accordance with the working fluids (air, oxygen, and hydrogen). Before carrying out CFD (Computational Fluid Dynamics) analysis, it was presumed that the inlet gas temperature was 300 K and pressure ratio was 5 : 1 as the boundary conditions. The density function was derived from the ideal gas law and the viscosity function was derived from Sutherland viscosity law. The pressure ratio along the ejection distance decreased more in the lower density working fluids. In the case of the higher density working fluids, however, the Mach number was lower. This shows that the density of the working fluids has a considerable effect on the shock wave. Therefore, the reliability of the analysis results were improved by experiments and CFD analysis showed that supersonic jet flow affects the shock wave by changing shape and diameter of the jet, pressure ratio, etc. according to working fluids.

고압을 사용하는 초음속 제트기술은 작동유체와 관련하여 다양한 형태의 산업 및 공학응용분야에 널리 이용되고 있다. 본 연구에서는 고압파이프에서 분출되는 초음속 제트유동에 의해 생성되는 충격파의 영향을 고찰하기 위해 ANSYS FLUENT v.16를 가지고 SST $k-{\omega}$ 난류모델을 적용하여 작동유체(공기, 산소, 수소)에 따른 압력비 및 Mach수의 유동특성을 해석하였다. CFD 해석시 경계조건으로 입구의 가스온도는 300 K이고, 압력비율은 5:1로 설정하였으며, 밀도함수는 이상기체의 법칙을 이용하였고, 점성함수는 Sutherland 점성의 법칙을 이용하였다. 그 해석결과로 작동유체의 밀도가 작은 기체일수록 분출거리에 따라 압력비가 더 크게 떨어짐을 알 수 있었고, Mach수는 작동유체의 밀도가 높을수록 낮음을 알 수 있었다. 따라서 작동유체의 밀도에 따라 충격파의 영향이 크다는 점을 알았다. 본 연구를 토대로 다양한 작동유체에 따른 제트의 형상 및 직경 변화, 압력비의 변화 등에 따른 초음속 제트유동이 충격파에 미치는 영향에 대한 실험 및 CFD 해석연구와 실증연구가 병행하여 진행된다면 해석결과의 신뢰성은 더 높아질 것으로 사료된다.

Keywords

References

  1. F. P. Bowden and J. H. Brunton,"Damage to solids by liquid impact at supersonic speeds", Nature, Vol. 181, No. 4613, pp. 873-875, 1958. https://doi.org/10.1038/181873a0
  2. S. M. Jeong and S. M. Jang,"A design and development of multi air gun for suction and shooting a jet of compressed air", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 13, No. 11, pp. 4944-4949, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.11.4944
  3. S. J. Kang, S. W. Seo and K. S. Lee,"Effect of moving plate on flow and thermal characteristics of dryer with jet impingement", Proceedings of the Korean Society of Mechanical Engineers, pp. 112-115, 2011.
  4. D. W. Yu, S. M. Choi and S. H. Oh,"Experimental study of the thrust vectoring characteristics in a two-dimensional convergent- divergent nozzle", Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 2, pp. 84-93, 2013. https://doi.org/10.6108/KSPE.2013.17.2.084
  5. J. O. Park, G. W. Kim and H. D. Kim,"An Experimental study on micro shock tube flow", Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 5, pp. 74-80, 2012. https://doi.org/10.6108/KSPE.2012.16.5.074
  6. J. O. Park, G. W. Kim and H. D. Kim,"Experimental study of the shock wave dynamics in micro shock tube", Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 5, pp. 54-59, 2013.
  7. J. H. Lee, J. H. Choi, H. G. Yoon and K. H. Kim,"The consideration about pressure on surface of cone shape in experiments of supersonic wind tunnel I", KSPE Spring Conference, pp. 391-394, 2011.
  8. S. G. Hong, Y. J. Jung, K. W. Park, M. H. Jeong, K. H. Lim, H. M. Suh and B. H. Shon,"A study on the optimization design of pulse air jet system to improve bag-filter performance", Journal of the Korea Academia-Industrial cooperation Society, Vol. 13, No. 8, pp. 3792-3799, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.8.3792
  9. H. K. Kwon, K. J. Tak, J. H. Kim, M. Oh, J. S. Chae, H. S. Kim and I. Moon,"Maximum pressure and the blast wave analysis of a amonunt of HMX", Korean Chem. Eng. Res., Vol. 52, No. 6, pp. 706-712, December, 2014. https://doi.org/10.9713/kcer.2014.52.6.706
  10. K. Mohamed, M. Paraschivoiu,"Real gas numerical simulation of hydrogen flow", International Energy Conversion Engineering Conference Technical Papers, pp. 727-740, 2004.
  11. P. R. Spalart and S. R. Allmaras,"A One-equation turbulence model for aerodynamic flows", Recherche Aerospatiale, Vol. 1, pp. 5-21, 1994.
  12. V. Yakhot, S. Thangam, T. B. Gatski, S. A. Orszag, C. G. Speziale,"Development of turbulence models for shear flows by a double expansion technique", Physics of Fluids, Vol. 4, No. 7, pp. 1510-1520, 1922. https://doi.org/10.1063/1.858424
  13. F. R. Menter,"Two-equation eddy-viscosity turbulence models for engineering applications", AIAA, Vol. 32, No. 8, pp. 1598-1605, 1994. https://doi.org/10.2514/3.12149
  14. H. D. Kam, and J. S. Kim,"Assessment and validation of turbulence models for the optimal computation of supersonic nozzle flow", The Korean Society of Propulsion Engineers, Vol. 17, No. 1, pp. 18-25, 2013. DOI: http://dx.doi.org/10.6108/KSPE.2013.17.1.018
  15. ANSYS FLUENT Theory Guide 16.1 ANSYS Inc., 2016
  16. J. D. Anderson"fundamentals of aerodynamics", Fifth edition, Mcgraw hill, pp. 515-543, 2011.