DOI QR코드

DOI QR Code

EFFECTS OF PHASE-LAGS AND VARIABLE THERMAL CONDUCTIVITY IN A THERMOVISCOELASTIC SOLID WITH A CYLINDRICAL CAVITY

  • Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University, Department of Mathematics, Faculty of Science, Kafrelsheikh University)
  • Received : 2015.03.18
  • Accepted : 2016.06.20
  • Published : 2016.09.25

Abstract

This paper investigates the effect of dual-phase-lags on a thermoviscoelastic orthotropic solid with a cylindrical cavity. The cylindrical cavity is subjected to a thermal shock varying heat and its material is taken to be of Kelvin-Voigt type. The phase-lag thermoelastic model, Lord and Shulman's model and the coupled thermoelasticity model are employed to study the thermomechanical coupling, thermal and mechanical relaxation (viscous) effects. Numerical solutions for temperature, displacement and thermal stresses are obtained by using the method of Laplace transforms. Numerical results are plotted to illustrate the effect phase-lags, viscoelasticity, and the variability thermal conductivity parameter on the studied fields. The variations of all field quantities in the context of dual-phase-lags and coupled thermoelasticity models follow similar trends while the Lord and Shulman's model may be different. The influence of viscosity parameter and variability of thermal conductivity is very pronounced on temperature and thermal stresses of the thermoviscoelastic solids.

Keywords

References

  1. M. A. Ezzat, M. I. Othman and A. S. El-Karamany, State space approach to generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci. 40(3) (2002), 283-302. https://doi.org/10.1016/S0020-7225(01)00045-3
  2. A. M. Abd-Alla, H.A.H. Hammad and S. M. Abo-Dahab, Magneto-thermo-viscoelastic interactions in an unbounded body with a spherical cavity subjected to a periodic loading, Appl. Math. Comput. 155(1) (2004), 235-248. https://doi.org/10.1016/S0096-3003(03)00773-2
  3. M. Aouadi and A.S. El-Karamany, The relaxation effects of volume properties in two-dimensional generalized thermoviscoelastic problem, Appl. Math. Comput. 151(3) (2004), 689-711. https://doi.org/10.1016/S0096-3003(03)00371-0
  4. M. I. A. Othman, Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity, Acta Mech, 174(3-4) (2005), 129-143. https://doi.org/10.1007/s00707-004-0190-2
  5. X. Tian and Y. Shen, Study on generalized magneto-thermoelastic problems by FEM in time domain, Acta Mech. Sinica 21(4) (2005), 380-387. https://doi.org/10.1007/s10409-005-0046-6
  6. M. Rakshit and B. Mukhopadhyay, A two dimensional thermoviscoelastic problem due to instantaneous point heat source, Math. Comput. Model. 46(11-12) (2007), 1388-1397. https://doi.org/10.1016/j.mcm.2006.11.036
  7. N. Sarkar and A. Lahiri, The effect of fractional parameter on a perfect conducting elastic half-space in generalized magneto-thermoelasticity, Mecc, 48(1) (2013), 231-245. https://doi.org/10.1007/s11012-012-9597-3
  8. M. A. Ezzat, A. S. El-Karamany and A. A. El-Bary, Generalized thermo-viscoelasticity with memory-dependent derivatives, Int. J. Mech. Sci. 89 (2014), 470-475. https://doi.org/10.1016/j.ijmecsci.2014.10.006
  9. A. S. El-Karamany and M. A. Ezzat, Two-temperature GreenNaghdi theory of type III in linear thermoviscoelastic anisotropic solid, Appl. Math. Model. 39(8) (2015), 2155-2171. https://doi.org/10.1016/j.apm.2014.10.031
  10. A. D. Kovalenko and V. G. Karnaukhov, A linearized theory of thermoviscoelasticity, Polymer Mech. 8(2) (1972), 194-199. https://doi.org/10.1007/BF00855966
  11. A. D. Drozdov, A constitutive model in finite thermoviscoelasticity based on the concept of transient networks, Acta Mech. 133(1) (1999), 13-37. https://doi.org/10.1007/BF01179008
  12. M. Rakshit Kundu and B. Mukhopadhyay, A thermoviscoelastic problem of an infinite medium with a spherical cavity using generalized theory of thermoelasticity, Math. Comput. Model. 41(1) (2005), 25-32. https://doi.org/10.1016/j.mcm.2004.07.009
  13. A. Baksi, B. K. Roy and R. K. Bera, Eigenvalue approach to study the effect of rotation and relaxation time in generalized magneto-thermo-viscoelastic medium in one dimension, Math. Comput. Model. 44(11-12) (2006), 1069-1079. https://doi.org/10.1016/j.mcm.2006.03.010
  14. A. Kar and M. Kanoria, Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect, Appl. Math. Model. 33(8) (2009), 3287-3298. https://doi.org/10.1016/j.apm.2008.10.036
  15. M. Kanoria and S. H. Mallik, Generalized thermoviscoelastic interaction due to periodically varying heat source with three-phase-lag effect, Europ. J. Mech. A/Solids 29(4) (2010), 695-703. https://doi.org/10.1016/j.euromechsol.2010.02.005
  16. M. A. Ezzat, A. S. El-Karamany, A. A. El-Bary and, M. A. Fayik, Fractional calculus in one-dimensional isotropic thermo-viscoelasticity, Compt. Rend. Mec. 341(7) (2013), 553-566. https://doi.org/10.1016/j.crme.2013.04.001
  17. S. Deswal and K. K. Kalkal, Fractional order heat conduction law in micropolar thermo-viscoelasticity with two temperatures, Int. J. Heat Mass Transfer 66 (2013), 451-460. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.047
  18. S. Deswal and K. K. Kalkal, Three-dimensional half-space problem within the framework of two-temperature thermo-viscoelasticity with three-phase-lag effects, Appl. Math. Model. 39(23-24) (2015), 7093-7112. https://doi.org/10.1016/j.apm.2015.02.045
  19. A. E. Abouelregal, Generalized thermoelasticity for an isotropic solid sphere in dual-phase-lag of heat transfer with surface heat flux, Int. J. Comput. Meth. Eng. Sci. Mech. 12(2) (2011), 96-105. https://doi.org/10.1080/15502287.2010.548172
  20. A. M. Zenkour, D. S. Mashat and A. E. Abouelregal, The effect of dual-phase-lag model on reflection of thermoelastic waves in a solid half space with variable material properties, Acta Mech. Solida Sinica 26(6) (2013), 659-670. https://doi.org/10.1016/S0894-9166(14)60009-4
  21. I. A. Abbas and A. M. Zenkour, Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating, J. Comput. Theor. Nanosci. 11(3) (2014), 642-645. https://doi.org/10.1166/jctn.2014.3407
  22. A. E. Abouelregal and A. M. Zenkour, Effect of phase lags on thermoelastic functionally graded microbeams subjected to ramp-type heating, IJST, Trans. Mech. Eng. 38(M2) (2014), 321-335.
  23. A. M. Zenkour, Two-dimensional coupled solution for thermoelastic beams via generalized dual-phase-lags model, Math. Model. Analys 21(3) (2016), 319-335. https://doi.org/10.3846/13926292.2016.1157835
  24. D. Y. Tzou, A unified approach for heat conduction from macro- to micro-scales, J. Heat Transfer 117(1) (1995), 8-16. https://doi.org/10.1115/1.2822329
  25. D. Y. Tzou, Macro to Micro-scale Heat Transfer: The Lagging Behavior, Taylor and Francis, Washington DC, 1996.
  26. H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15(5) (1967), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  27. E. Green and K. A. Lindsay, Thermoelasticity, J. Elast. 2(1) (1972), 1-7. https://doi.org/10.1007/BF00045689
  28. A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elast. 31(3) (1993), 189-209. https://doi.org/10.1007/BF00044969
  29. A. C. Eringen, Mechanic of Continua, John Wiley, Sons Inc., New York, 1967.
  30. N. Noda, Thermal Stresses in Materials with Temperature-dependent Properties, Thermal Stresses I, R.B. Hetnarski (Editor), North-Holland, Amsterdam, 1986.
  31. G. Honig and U. Hirdes, A method for the numerical inversion of Laplace transform, J. Comp. Appl. Math. 10(1) (1984), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  32. J. C. Misra, N. C. Chattopadhyay and S. C. Samanta, Study of the thermoelastic interactions in an elastic half space subjected to a ramp-type heatinga statespace approach, Int. J. Eng. Sci. 34(5) (1996), 579-596. https://doi.org/10.1016/0020-7225(95)00128-X

Cited by

  1. Fractional viscoelastic Voigt’s model for initially stressed microbeams induced by ultrashort laser heat source pp.1745-5049, 2019, https://doi.org/10.1080/17455030.2018.1554927