References
- M. A. Ezzat, M. I. Othman and A. S. El-Karamany, State space approach to generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci. 40(3) (2002), 283-302. https://doi.org/10.1016/S0020-7225(01)00045-3
- A. M. Abd-Alla, H.A.H. Hammad and S. M. Abo-Dahab, Magneto-thermo-viscoelastic interactions in an unbounded body with a spherical cavity subjected to a periodic loading, Appl. Math. Comput. 155(1) (2004), 235-248. https://doi.org/10.1016/S0096-3003(03)00773-2
- M. Aouadi and A.S. El-Karamany, The relaxation effects of volume properties in two-dimensional generalized thermoviscoelastic problem, Appl. Math. Comput. 151(3) (2004), 689-711. https://doi.org/10.1016/S0096-3003(03)00371-0
- M. I. A. Othman, Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity, Acta Mech, 174(3-4) (2005), 129-143. https://doi.org/10.1007/s00707-004-0190-2
- X. Tian and Y. Shen, Study on generalized magneto-thermoelastic problems by FEM in time domain, Acta Mech. Sinica 21(4) (2005), 380-387. https://doi.org/10.1007/s10409-005-0046-6
- M. Rakshit and B. Mukhopadhyay, A two dimensional thermoviscoelastic problem due to instantaneous point heat source, Math. Comput. Model. 46(11-12) (2007), 1388-1397. https://doi.org/10.1016/j.mcm.2006.11.036
- N. Sarkar and A. Lahiri, The effect of fractional parameter on a perfect conducting elastic half-space in generalized magneto-thermoelasticity, Mecc, 48(1) (2013), 231-245. https://doi.org/10.1007/s11012-012-9597-3
- M. A. Ezzat, A. S. El-Karamany and A. A. El-Bary, Generalized thermo-viscoelasticity with memory-dependent derivatives, Int. J. Mech. Sci. 89 (2014), 470-475. https://doi.org/10.1016/j.ijmecsci.2014.10.006
- A. S. El-Karamany and M. A. Ezzat, Two-temperature GreenNaghdi theory of type III in linear thermoviscoelastic anisotropic solid, Appl. Math. Model. 39(8) (2015), 2155-2171. https://doi.org/10.1016/j.apm.2014.10.031
- A. D. Kovalenko and V. G. Karnaukhov, A linearized theory of thermoviscoelasticity, Polymer Mech. 8(2) (1972), 194-199. https://doi.org/10.1007/BF00855966
- A. D. Drozdov, A constitutive model in finite thermoviscoelasticity based on the concept of transient networks, Acta Mech. 133(1) (1999), 13-37. https://doi.org/10.1007/BF01179008
- M. Rakshit Kundu and B. Mukhopadhyay, A thermoviscoelastic problem of an infinite medium with a spherical cavity using generalized theory of thermoelasticity, Math. Comput. Model. 41(1) (2005), 25-32. https://doi.org/10.1016/j.mcm.2004.07.009
- A. Baksi, B. K. Roy and R. K. Bera, Eigenvalue approach to study the effect of rotation and relaxation time in generalized magneto-thermo-viscoelastic medium in one dimension, Math. Comput. Model. 44(11-12) (2006), 1069-1079. https://doi.org/10.1016/j.mcm.2006.03.010
- A. Kar and M. Kanoria, Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect, Appl. Math. Model. 33(8) (2009), 3287-3298. https://doi.org/10.1016/j.apm.2008.10.036
- M. Kanoria and S. H. Mallik, Generalized thermoviscoelastic interaction due to periodically varying heat source with three-phase-lag effect, Europ. J. Mech. A/Solids 29(4) (2010), 695-703. https://doi.org/10.1016/j.euromechsol.2010.02.005
- M. A. Ezzat, A. S. El-Karamany, A. A. El-Bary and, M. A. Fayik, Fractional calculus in one-dimensional isotropic thermo-viscoelasticity, Compt. Rend. Mec. 341(7) (2013), 553-566. https://doi.org/10.1016/j.crme.2013.04.001
- S. Deswal and K. K. Kalkal, Fractional order heat conduction law in micropolar thermo-viscoelasticity with two temperatures, Int. J. Heat Mass Transfer 66 (2013), 451-460. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.047
- S. Deswal and K. K. Kalkal, Three-dimensional half-space problem within the framework of two-temperature thermo-viscoelasticity with three-phase-lag effects, Appl. Math. Model. 39(23-24) (2015), 7093-7112. https://doi.org/10.1016/j.apm.2015.02.045
- A. E. Abouelregal, Generalized thermoelasticity for an isotropic solid sphere in dual-phase-lag of heat transfer with surface heat flux, Int. J. Comput. Meth. Eng. Sci. Mech. 12(2) (2011), 96-105. https://doi.org/10.1080/15502287.2010.548172
- A. M. Zenkour, D. S. Mashat and A. E. Abouelregal, The effect of dual-phase-lag model on reflection of thermoelastic waves in a solid half space with variable material properties, Acta Mech. Solida Sinica 26(6) (2013), 659-670. https://doi.org/10.1016/S0894-9166(14)60009-4
- I. A. Abbas and A. M. Zenkour, Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating, J. Comput. Theor. Nanosci. 11(3) (2014), 642-645. https://doi.org/10.1166/jctn.2014.3407
- A. E. Abouelregal and A. M. Zenkour, Effect of phase lags on thermoelastic functionally graded microbeams subjected to ramp-type heating, IJST, Trans. Mech. Eng. 38(M2) (2014), 321-335.
- A. M. Zenkour, Two-dimensional coupled solution for thermoelastic beams via generalized dual-phase-lags model, Math. Model. Analys 21(3) (2016), 319-335. https://doi.org/10.3846/13926292.2016.1157835
- D. Y. Tzou, A unified approach for heat conduction from macro- to micro-scales, J. Heat Transfer 117(1) (1995), 8-16. https://doi.org/10.1115/1.2822329
- D. Y. Tzou, Macro to Micro-scale Heat Transfer: The Lagging Behavior, Taylor and Francis, Washington DC, 1996.
- H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15(5) (1967), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- E. Green and K. A. Lindsay, Thermoelasticity, J. Elast. 2(1) (1972), 1-7. https://doi.org/10.1007/BF00045689
- A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elast. 31(3) (1993), 189-209. https://doi.org/10.1007/BF00044969
- A. C. Eringen, Mechanic of Continua, John Wiley, Sons Inc., New York, 1967.
- N. Noda, Thermal Stresses in Materials with Temperature-dependent Properties, Thermal Stresses I, R.B. Hetnarski (Editor), North-Holland, Amsterdam, 1986.
- G. Honig and U. Hirdes, A method for the numerical inversion of Laplace transform, J. Comp. Appl. Math. 10(1) (1984), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- J. C. Misra, N. C. Chattopadhyay and S. C. Samanta, Study of the thermoelastic interactions in an elastic half space subjected to a ramp-type heatinga statespace approach, Int. J. Eng. Sci. 34(5) (1996), 579-596. https://doi.org/10.1016/0020-7225(95)00128-X
Cited by
- Fractional viscoelastic Voigt’s model for initially stressed microbeams induced by ultrashort laser heat source pp.1745-5049, 2019, https://doi.org/10.1080/17455030.2018.1554927