DOI QR코드

DOI QR Code

Imaging Spectrum and Pitfalls of 11C-Methionine Positron Emission Tomography in a Series of Patients with Intracranial Lesions

  • Ito, Kimiteru (Department of Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology) ;
  • Matsuda, Hiroshi (Integrative Brain Imaging Center, National Center of Neurology and Psychiatry) ;
  • Kubota, Kazoo (Division of Nuclear Medicine, National Center for Global Health and Medicine)
  • Received : 2015.11.04
  • Accepted : 2016.03.07
  • Published : 2016.06.01

Abstract

$^{11}C$-methionine (Met) positron emission tomography (PET) is one of the most commonly used PET tracers for evaluating brain tumors. However, few reports have described tips and pitfalls of $^{11}C$-Met PET for general practitioners. Physiological $^{11}C$-Met uptake, anatomical variations, vascular disorders, non-tumorous lesions such as inflammation or dysplasia, benign brain tumors and patient condition during $^{11}C$-Met PET examination can potentially affect the image interpretation and cause false positives and negatives. These pitfalls in the interpretation of $^{11}C$-Met PET images are important for not only nuclear medicine physicians but also general radiologists. Familiarity with the spectrum and pitfalls of $^{11}C$-Met images could help prevent unfavorable clinical results caused by misdiagnoses.

Keywords

References

  1. Zhao C, Zhang Y, Wang J. A meta-analysis on the diagnostic performance of (18)F-FDG and (11)C-methionine PET for differentiating brain tumors. AJNR Am J Neuroradiol 2014;35:1058-1065 https://doi.org/10.3174/ajnr.A3718
  2. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 2008;10:1-18 https://doi.org/10.1007/s11307-007-0115-2
  3. Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 2013;40:615-635 https://doi.org/10.1007/s00259-012-2295-5
  4. Nagata T, Tsuyuguchi N, Uda T, Terakawa Y, Takami T, Ohata K. Examination of 11C-methionine metabolism by the standardized uptake value in the normal brain of children. J Nucl Med 2011;52:201-205 https://doi.org/10.2967/jnumed.110.082875
  5. Lindholm P, Leskinen-Kallio S, Kirvela O, Nagren K, Lehikoinen P, Pulkki K, et al. Head and neck cancer: effect of food ingestion on uptake of C-11 methionine. Radiology 1994;190:863-867 https://doi.org/10.1148/radiology.190.3.8115641
  6. Torii K, Tsuyuguchi N, Kawabe J, Sunada I, Hara M, Shiomi S. Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med 2005;19:677-683 https://doi.org/10.1007/BF02985116
  7. Tomura N, Ito Y, Matsuoka H, Saginoya T, Numazawa SI, Mizuno Y, et al. PET findings of intramedullary tumors of the spinal cord using [18F] FDG and [11C] methionine. AJNR Am J Neuroradiol 2013;34:1278-1283 https://doi.org/10.3174/ajnr.A3374
  8. Kawase Y, Yamamoto Y, Kameyama R, Kawai N, Kudomi N, Nishiyama Y. Comparison of 11C-methionine PET and 18F-FDG PET in patients with primary central nervous system lymphoma. Mol Imaging Biol 2011;13:1284-1289 https://doi.org/10.1007/s11307-010-0447-1
  9. Okochi Y, Nihashi T, Fujii M, Kato K, Okada Y, Ando Y, et al. Clinical use of (11)C-methionine and (18)F-FDG-PET for germinoma in central nervous system. Ann Nucl Med 2014;28:94-102 https://doi.org/10.1007/s12149-013-0787-4
  10. Phi JH, Paeng JC, Lee HS, Wang KC, Cho BK, Lee JY, et al. Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors in pediatric epilepsy patients using 18F-FDG and 11C-methionine pet. J Nucl Med 2010;51:728-734 https://doi.org/10.2967/jnumed.109.070920
  11. Arita H, Kinoshita M, Okita Y, Hirayama R, Watabe T, Ishohashi K, et al. Clinical characteristics of meningiomas assessed by $^{11}C$-methionine and $^{18}F$-fluorodeoxyglucose positron-emission tomography. J Neurooncol 2012;107:379-386 https://doi.org/10.1007/s11060-011-0759-2
  12. Takao H, Momose T, Ohtomo K. Methionine and glucose metabolism of central neurocytoma: a PET study. Clin Nucl Med 2004;29:838-839 https://doi.org/10.1097/00003072-200412000-00023
  13. Nakagawa M, Kuwabara Y, Sasaki M, Koga H, Chen T, Kaneko O, et al. 11C-methionine uptake in cerebrovascular disease: a comparison with 18F-fDG PET and 99mTc-HMPAO SPECT. Ann Nucl Med 2002;16:207-211 https://doi.org/10.1007/BF02996302
  14. Harada Y, Hirata K, Kobayashi H, Usui R, Shiga T, Terae S, et al. A pitfall of C-11 methionine PET: cerebral venous infarction mimicked a glioma. Clin Nucl Med 2012;37:110-111 https://doi.org/10.1097/RLU.0b013e3182336433
  15. O'Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 1997;38:1575-1583
  16. Sasaki M, Kuwabara Y, Yoshida T, Fukumura T, Morioka T, Nishio S, et al. Carbon-11-methionine PET in focal cortical dysplasia: a comparison with fluorine-18-FDG PET and technetium-99m-ECD SPECT. J Nucl Med 1998;39:974-977

Cited by

  1. The roles of 11C-acetate PET/CT in predicting tumor differentiation and survival in patients with cerebral glioma vol.45, pp.6, 2016, https://doi.org/10.1007/s00259-018-3948-9
  2. 18F-FIMP: a LAT1-specific PET probe for discrimination between tumor tissue and inflammation vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-52270-x
  3. Isolated Neurosarcoidosis Presenting Similarity to Malignant Meningioma on Neuroimaging Findings vol.28, pp.5, 2016, https://doi.org/10.7887/jcns.28.289
  4. Diagnostic accuracy of 13 N-ammonia PET, 11 C-methionine PET and 18 F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma vol.19, pp.None, 2016, https://doi.org/10.1186/s12885-019-5560-1
  5. Multifocal brain lesions vol.120, pp.5, 2016, https://doi.org/10.17116/jnevro2020120051100
  6. Multimodality imaging of adult rhabdomyosarcoma: the added value of hybrid imaging vol.93, pp.1112, 2020, https://doi.org/10.1259/bjr.20200250