DOI QR코드

DOI QR Code

Importance of Contrast-Enhanced Fluid-Attenuated Inversion Recovery Magnetic Resonance Imaging in Various Intracranial Pathologic Conditions

  • Lee, Eun Kyoung (Department of Radiology, Dongguk University Ilsan Hospital) ;
  • Lee, Eun Ja (Department of Radiology, Dongguk University Ilsan Hospital) ;
  • Kim, Sungwon (Department of Radiology, Dongguk University Ilsan Hospital) ;
  • Lee, Yong Seok (Department of Radiology, Dongguk University Ilsan Hospital)
  • Received : 2015.05.17
  • Accepted : 2015.10.29
  • Published : 2016.02.01

Abstract

Intracranial lesions may show contrast enhancement through various mechanisms that are closely associated with the disease process. The preferred magnetic resonance sequence in contrast imaging is T1-weighted imaging (T1WI) at most institutions. However, lesion enhancement is occasionally inconspicuous on T1WI. Although fluid-attenuated inversion recovery (FLAIR) sequences are commonly considered as T2-weighted imaging with dark cerebrospinal fluid, they also show mild T1-weighted contrast, which is responsible for the contrast enhancement. For several years, FLAIR imaging has been successfully incorporated as a routine sequence at our institution for contrast-enhanced (CE) brain imaging in detecting various intracranial diseases. In this pictorial essay, we describe and illustrate the diagnostic importance of CE-FLAIR imaging in various intracranial pathologic conditions.

Keywords

References

  1. De Coene B, Hajnal JV, Gatehouse P, Longmore DB, White SJ, Oatridge A, et al. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 1992;13:1555-1564
  2. Rydberg JN, Hammond CA, Grimm RC, Erickson BJ, Jack CR Jr, Huston J 3rd, et al. Initial clinical experience in MR imaging of the brain with a fast fluid-attenuated inversion-recovery pulse sequence. Radiology 1994;193:173-180 https://doi.org/10.1148/radiology.193.1.8090888
  3. Hajnal JV, Bryant DJ, Kasuboski L, Pattany PM, De Coene B, Lewis PD, et al. Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 1992;16:841-844 https://doi.org/10.1097/00004728-199211000-00001
  4. Essig M, Knopp MV, Schoenberg SO, Hawighorst H, Wenz F, Debus J, et al. Cerebral gliomas and metastases: assessment with contrast-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 1999;210:551-557 https://doi.org/10.1148/radiology.210.2.r99ja22551
  5. Mathews VP, Caldemeyer KS, Lowe MJ, Greenspan SL, Weber DM, Ulmer JL. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 1999;211:257-263 https://doi.org/10.1148/radiology.211.1.r99mr25257
  6. Melhem ER, Bert RJ, Walker RE. Usefulness of optimized gadolinium-enhanced fast fluid-attenuated inversion recovery MR imaging in revealing lesions of the brain. AJR Am J Roentgenol 1998;171:803-807 https://doi.org/10.2214/ajr.171.3.9725320
  7. Mathews VP, Caldemeyer KS, Ulmer JL, Nguyen H, Yuh WT. Effects of contrast dose, delayed imaging, and magnetization transfer saturation on gadolinium-enhanced MR imaging of brain lesions. J Magn Reson Imaging 1997;7:14-22 https://doi.org/10.1002/jmri.1880070104
  8. Sage MR, Wilson AJ, Scroop R. Contrast media and the brain. The basis of CT and MR imaging enhancement. Neuroimaging Clin N Am 1998;8:695-707
  9. Smirniotopoulos JG, Murphy FM, Rushing EJ, Rees JH, Schroeder JW. Patterns of contrast enhancement in the brain and meninges. Radiographics 2007;27:525-551 https://doi.org/10.1148/rg.272065155
  10. Fukuoka H, Hirai T, Okuda T, Shigematsu Y, Sasao A, Kimura E, et al. Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T. AJNR Am J Neuroradiol 2010;31:868-873 https://doi.org/10.3174/ajnr.A1937
  11. Bozzao A, Floris R, Fasoli F, Fantozzi LM, Colonnese C, Simonetti G. Cerebrospinal fluid changes after intravenous injection of gadolinium chelate: assessment by FLAIR MR imaging. Eur Radiol 2003;13:592-597
  12. Kim EY, Kim SS, Na DG, Roh HG, Ryoo JW, Kim HK. Sulcal hyperintensity on fluid-attenuated inversion recovery imaging in acute ischemic stroke patients treated with intra-arterial thrombolysis: iodinated contrast media as its possible cause and the association with hemorrhagic transformation. J Comput Assist Tomogr 2005;29:264-269 https://doi.org/10.1097/01.rct.0000155669.05643.49
  13. Kohrmann M, Struffert T, Frenzel T, Schwab S, Doerfler A. The hyperintense acute reperfusion marker on fluid-attenuated inversion recovery magnetic resonance imaging is caused by gadolinium in the cerebrospinal fluid. Stroke 2012;43:259-261 https://doi.org/10.1161/STROKEAHA.111.632356
  14. Tsuchiya K, Katase S, Yoshino A, Hachiya J. FLAIR MR imaging for diagnosing intracranial meningeal carcinomatosis. AJR Am J Roentgenol 2001;176:1585-1588 https://doi.org/10.2214/ajr.176.6.1761585
  15. Kremer S, Abu Eid M, Bierry G, Bogorin A, Koob M, Dietemann JL, et al. Accuracy of delayed post-contrast FLAIR MR imaging for the diagnosis of leptomeningeal infectious or tumoral diseases. J Neuroradiol 2006;33:285-291 https://doi.org/10.1016/S0150-9861(06)77286-8
  16. Jeon JY, Choi JW, Roh HG, Moon WJ. Effect of imaging time in the magnetic resonance detection of intracerebral metastases using single dose gadobutrol. Korean J Radiol 2014;15:145-150 https://doi.org/10.3348/kjr.2014.15.1.145
  17. Bagheri MH, Meshksar A, Nabavizadeh SA, Borhani-Haghighi A, Ashjazadeh N, Nikseresht AR. Diagnostic value of contrast-enhanced fluid-attenuated inversion-recovery and delayed contrast-enhanced brain MRI in multiple sclerosis. Acad Radiol 2008;15:15-23 https://doi.org/10.1016/j.acra.2007.07.022
  18. Goo HW, Choi CG. Post-contrast FLAIR MR imaging of the brain in children: normal and abnormal intracranial enhancement. Pediatr Radiol 2003;33:843-849 https://doi.org/10.1007/s00247-003-1057-8
  19. Essig M, Schoenberg SO, Debus J, van Kaick G. Disappearance of tumor contrast on contrast-enhanced FLAIR imaging of cerebral gliomas. Magn Reson Imaging 2000;18:513-518 https://doi.org/10.1016/S0730-725X(00)00139-9
  20. Terae S, Yoshida D, Kudo K, Tha KK, Fujino M, Miyasaka K. Contrast-enhanced FLAIR imaging in combination with pre- and postcontrast magnetization transfer T1-weighted imaging: usefulness in the evaluation of brain metastases. J Magn Reson Imaging 2007;25:479-487 https://doi.org/10.1002/jmri.20847
  21. Tomura N, Narita K, Takahashi S, Otani T, Sakuma I, Yasuda K, et al. Contrast-enhanced multi-shot echo-planar FLAIR in the depiction of metastatic tumors of the brain: comparison with contrast-enhanced spin-echo T1-weighted imaging. Acta Radiol 2007;48:1032-1037 https://doi.org/10.1080/02841850701499425
  22. Ahn SJ, Chung TS, Chang JH, Lee SK. The added value of double dose gadolinium enhanced 3D T2 fluid-attenuated inversion recovery for evaluating small brain metastases. Yonsei Med J 2014;55:1231-1237 https://doi.org/10.3349/ymj.2014.55.5.1231
  23. Ercan N, Gultekin S, Celik H, Tali TE, Oner YA, Erbas G. Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases. AJNR Am J Neuroradiol 2004;25:761-765
  24. Sasiadek M, Wojtek P, Sokolowska D, Konopka M, Pieniazek P, Zimny A. Evaluation of contrast-enhanced FLAIR sequence in MR assessment of intracranial tumours. Med Sci Monit 2004;10 Suppl 3:94-100
  25. Zhou ZR, Shen TZ, Chen XR, Peng WJ. Diagnostic value of contrast-enhanced fluid-attenuated inversion-recovery MRI for intracranial tumors in comparison with post-contrast T1W spin-echo MRI. Chin Med J (Engl) 2006;119:467-473
  26. Splendiani A, Puglielli E, De Amicis R, Necozione S, Masciocchi C, Gallucci M. Contrast-enhanced FLAIR in the early diagnosis of infectious meningitis. Neuroradiology 2005;47:591-598 https://doi.org/10.1007/s00234-005-1383-7
  27. Parmar H, Sitoh YY, Anand P, Chua V, Hui F. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases. Eur J Radiol 2006;58:89-95 https://doi.org/10.1016/j.ejrad.2005.11.012
  28. Kim HJ. Importance of contrast-enhanced fluid-attenuated inversion recovery imaging to detect paradoxical expansion of tuberculoma. Int J Infect Dis 2014;24:37-39 https://doi.org/10.1016/j.ijid.2014.03.1383
  29. Lee JS, Park JK, Kim SH, Jeong SY, Kim BS, Choi G, et al. Usefulness of contrast enhanced FLAIR imaging for predicting the severity of meningitis. J Neurol 2014;261:817-822 https://doi.org/10.1007/s00415-014-7268-0
  30. Ahmad A, Azad S, Azad R. Differentiation of Leptomeningeal and Vascular Enhancement on Post-contrast FLAIR MRI Sequence: Role in Early Detection of Infectious Meningitis. J Clin Diagn Res 2015;9:TC08-TC12
  31. Vaswani AK, Nizamani WM, Ali M, Aneel G, Shahani BK, Hussain S. Diagnostic Accuracy of Contrast-Enhanced FLAIR Magnetic Resonance Imaging in Diagnosis of Meningitis Correlated with CSF Analysis. ISRN Radiol 2014;2014:578986
  32. Singh SK, Leeds NE, Ginsberg LE. MR imaging of leptomeningeal metastases: comparison of three sequences. AJNR Am J Neuroradiol 2002;23:817-821
  33. Griffiths PD, Coley SC, Romanowski CA, Hodgson T, Wilkinson ID. Contrast-enhanced fluid-attenuated inversion recovery imaging for leptomeningeal disease in children. AJNR Am J Neuroradiol 2003;24:719-723
  34. Koide R, Isoo A, Ishii K, Uruha A, Bandoh M. Rheumatoid leptomeningitis: rare complication of rheumatoid arthritis. Clin Rheumatol 2009;28:1117-1119 https://doi.org/10.1007/s10067-009-1187-y
  35. Shimada K, Matsui T, Kawakami M, Hayakawa H, Futami H, Michishita K, et al. Diffuse chronic leptomeningitis with seropositive rheumatoid arthritis: report of a case successfully treated as rheumatoid leptomeningitis. Mod Rheumatol 2009;19:556-562 https://doi.org/10.3109/s10165-009-0186-9
  36. Matsushima M, Yaguchi H, Niino M, Akimoto-Tsuji S, Yabe I, Onishi K, et al. MRI and pathological findings of rheumatoid meningitis. J Clin Neurosci 2010;17:129-132 https://doi.org/10.1016/j.jocn.2009.01.033
  37. Kamran S, Bener AB, Alper D, Bakshi R. Role of fluid-attenuated inversion recovery in the diagnosis of meningitis: comparison with contrast-enhanced magnetic resonance imaging. J Comput Assist Tomogr 2004;28:68-72 https://doi.org/10.1097/00004728-200401000-00011
  38. Meltzer CC, Fukui MB, Kanal E, Smirniotopoulos JG. MR imaging of the meninges. Part I. Normal anatomic features and nonneoplastic disease. Radiology 1996;201:297-308 https://doi.org/10.1148/radiology.201.2.8888215
  39. Elster AD, DiPersio DA. Cranial postoperative site: assessment with contrast-enhanced MR imaging. Radiology 1990;174:93-98 https://doi.org/10.1148/radiology.174.1.2294578
  40. Sinclair AG, Scoffings DJ. Imaging of the post-operative cranium. Radiographics 2010;30:461-482 https://doi.org/10.1148/rg.302095115
  41. Kim SC, Park SW, Ryoo I, Jung SC, Yun TJ, Choi SH, et al. Contrast-enhanced FLAIR (fluid-attenuated inversion recovery) for evaluating mild traumatic brain injury. PLoS One 2014;9:e102229 https://doi.org/10.1371/journal.pone.0102229
  42. Kanamalla US, Baker KB, Boyko OB. Gadolinium diffusion into subdural space: visualization with FLAIR MR imaging. AJR Am J Roentgenol 2001;176:1604-1605 https://doi.org/10.2214/ajr.176.6.1761604
  43. Fink KR, Fink JR. Imaging of brain metastases. Surg Neurol Int 2013;4(Suppl 4):S209-S219 https://doi.org/10.4103/2152-7806.111298
  44. Barajas RF Jr, Cha S. Imaging diagnosis of brain metastasis. Prog Neurol Surg 2012;25:55-73
  45. Lee EK, Lee EJ, Kim MS, Park HJ, Park NH, Park S 2nd, et al. Intracranial metastases: spectrum of MR imaging findings. Acta Radiol 2012;53:1173-1185 https://doi.org/10.1258/ar.2012.120291
  46. Tsuchiya K, Katase S, Yoshino A, Hachiya J. Pre- and postcontrast FLAIR MR imaging in the diagnosis of intracranial meningeal pathology. Radiat Med 2000;18:363-368
  47. Oguz KK, Cila A. Rim enhancement of meningiomas on fast FLAIR imaging. Neuroradiology 2003;45:78-81 https://doi.org/10.1007/s00234-002-0914-8
  48. Oner AY, Tokgoz N, Tali ET, Uzun M, Isik S. Imaging meningiomas: is there a need for post-contrast FLAIR? Clin Radiol 2005;60:1300-1305 https://doi.org/10.1016/j.crad.2005.07.005
  49. Enokizono M, Morikawa M, Matsuo T, Hayashi T, Horie N, Honda S, et al. The rim pattern of meningioma on 3D FLAIR imaging: correlation with tumor-brain adhesion and histological grading. Magn Reson Med Sci 2014;13:251-260 https://doi.org/10.2463/mrms.2013-0132
  50. Gebarski SS, Telian SA, Niparko JK. Enhancement along the normal facial nerve in the facial canal: MR imaging and anatomic correlation. Radiology 1992;183:391-394 https://doi.org/10.1148/radiology.183.2.1561339
  51. Hong HS, Yi BH, Cha JG, Park SJ, Kim DH, Lee HK, et al. Enhancement pattern of the normal facial nerve at 3.0 T temporal MRI. Br J Radiol 2010;83:118-121 https://doi.org/10.1259/bjr/70067143
  52. Lim HK, Lee JH, Hyun D, Park JW, Kim JL, Lee HY, et al. MR diagnosis of facial neuritis: diagnostic performance of contrast-enhanced 3D-FLAIR technique compared with contrast-enhanced 3D-T1-fast-field echo with fat suppression. AJNR Am J Neuroradiol 2012;33:779-783 https://doi.org/10.3174/ajnr.A2851
  53. Hyun DH, Lim HK, Park JW, Kim JL, Lee HY, Park SC, et al. Enhancement Pattern of the Normal Facial Nerve on Three-Dimensional (3D)-Fluid Attenuated Inversion Recovery (FLAIR) Sequence at 3.0 T MR Units. J Korean Soc Magn Reson Med 2012;16:25-30 https://doi.org/10.13104/jksmrm.2012.16.1.25
  54. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 2004;56:468-477 https://doi.org/10.1002/ana.20199
  55. Dechambre SD, Duprez T, Grandin CB, Lecouvet FE, Peeters A, Cosnard G. High signal in cerebrospinal fluid mimicking subarachnoid haemorrhage on FLAIR following acute stroke and intravenous contrast medium. Neuroradiology 2000;42:608-611 https://doi.org/10.1007/s002340000347
  56. Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke 2004;35(11 Suppl 1):2659-2661 https://doi.org/10.1161/01.STR.0000144051.32131.09
  57. Henning EC, Latour LL, Warach S. Verification of enhancement of the CSF space, not parenchyma, in acute stroke patients with early blood-brain barrier disruption. J Cereb Blood Flow Metab 2008;28:882-886 https://doi.org/10.1038/sj.jcbfm.9600598
  58. Kidwell CS, Latour L, Saver JL, Alger JR, Starkman S, Duckwiler G, et al. Thrombolytic toxicity: blood brain barrier disruption in human ischemic stroke. Cerebrovasc Dis 2008;25:338-343 https://doi.org/10.1159/000118379
  59. Barr TL, Latour LL, Lee KY, Schaewe TJ, Luby M, Chang GS, et al. Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke 2010;41:e123-e128 https://doi.org/10.1161/STROKEAHA.109.570515
  60. Batra A, Latour LL, Ruetzler CA, Hallenbeck JM, Spatz M, Warach S, et al. Increased plasma and tissue MMP levels are associated with BCSFB and BBB disruption evident on post-contrast FLAIR after experimental stroke. J Cereb Blood Flow Metab 2010;30:1188-1199 https://doi.org/10.1038/jcbfm.2010.1
  61. Ostwaldt AC, Rozanski M, Schaefer T, Ebinger M, Jungehulsing GJ, Villringer K, et al. Hyperintense acute reperfusion marker is associated with higher contrast agent dosage in acute ischaemic stroke. Eur Radiol 2015;25:3161-3166 https://doi.org/10.1007/s00330-015-3749-5
  62. Rozanski M, Ebinger M, Schmidt WU, Hotter B, Pittl S, Heuschmann PU, et al. Hyperintense acute reperfusion marker on FLAIR is not associated with early haemorrhagic transformation in the elderly. Eur Radiol 2010;20:2990-2996 https://doi.org/10.1007/s00330-010-1881-9
  63. Ogami R, Nakahara T, Hamasaki O, Araki H, Kurisu K. Cerebrospinal fluid enhancement on fluid attenuated inversion recovery images after carotid artery stenting with neuroprotective balloon occlusions: hemodynamic instability and blood-brain barrier disruption. Cardiovasc Intervent Radiol 2011;34:936-941 https://doi.org/10.1007/s00270-010-0035-4
  64. Wilkinson ID, Griffiths PD, Hoggard N, Cleveland TJ, Gaines PA, Venables GS. Unilateral leptomeningeal enhancement after carotid stent insertion detected by magnetic resonance imaging. Stroke 2000;31:848-851 https://doi.org/10.1161/01.STR.31.4.848
  65. Michel E, Liu H, Remley KB, Martin AJ, Madison MT, Kucharczyk J, et al. Perfusion MR neuroimaging in patients undergoing balloon test occlusion of the internal carotid artery. AJNR Am J Neuroradiol 2001;22:1590-1596
  66. Merino JG, Latour LL, Tso A, Lee KY, Kang DW, Davis LA, et al. Blood-brain barrier disruption after cardiac surgery. AJNR Am J Neuroradiol 2013;34:518-523 https://doi.org/10.3174/ajnr.A3251
  67. Okamura T, Ishibashi N, Zurakowski D, Jonas RA. Cardiopulmonary bypass increases permeability of the blood-cerebrospinal fluid barrier. Ann Thorac Surg 2010;89:187-194 https://doi.org/10.1016/j.athoracsur.2009.09.030
  68. Seo DW, Na DG, Na DL, Moon SY, Hong SB. Subcortical hypointensity in partial status epilepticus associated with nonketotic hyperglycemia. J Neuroimaging 2003;13:259-263 https://doi.org/10.1111/j.1552-6569.2003.tb00188.x
  69. Bathla G, Policeni B, Agarwal A. Neuroimaging in patients with abnormal blood glucose levels. AJNR Am J Neuroradiol 2014;35:833-840 https://doi.org/10.3174/ajnr.A3486
  70. Arsenault TM, King BF, Marsh JW Jr, Goodman JA, Weaver AL, Wood CP, et al. Systemic gadolinium toxicity in patients with renal insufficiency and renal failure: retrospective analysis of an initial experience. Mayo Clin Proc 1996;71:1150-1154 https://doi.org/10.4065/71.12.1150
  71. Rai AT, Hogg JP. Persistence of gadolinium in CSF: a diagnostic pitfall in patients with end-stage renal disease. AJNR Am J Neuroradiol 2001;22:1357-1361
  72. Maramattom BV, Manno EM, Wijdicks EF, Lindell EP. Gadolinium encephalopathy in a patient with renal failure. Neurology 2005;64:1276-1278 https://doi.org/10.1212/01.WNL.0000156805.45547.6E
  73. Morris JM, Miller GM. Increased signal in the subarachnoid space on fluid-attenuated inversion recovery imaging associated with the clearance dynamics of gadolinium chelate: a potential diagnostic pitfall. AJNR Am J Neuroradiol 2007;28:1964-1967 https://doi.org/10.3174/ajnr.A0694
  74. Ong EM, Yeh IB. High signal in the cerebrospinal fluid following prior gadolinium administration in a patient with renal impairment. Singapore Med J 2007;48:e296-e298
  75. Shellock FG, Kanal E. Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging 1999;10:477-484 https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<477::AID-JMRI33>3.0.CO;2-E

Cited by

  1. Qualitative and Quantitative Comparison of Contrast-Enhanced Fluid-Attenuated Inversion Recovery, Magnetization Transfer Spin Echo, and Fat-Saturation T1-Weighted Sequences in Infectious Meningitis vol.18, pp.6, 2016, https://doi.org/10.3348/kjr.2017.18.6.973
  2. Blood–brain barrier breakdown in reversible cerebral vasoconstriction syndrome: Implications for pathophysiology and diagnosis vol.81, pp.3, 2017, https://doi.org/10.1002/ana.24891
  3. Letter to the Editor. Detection of MRI-negative Cushing’s disease by FLAIR imaging: is it reliable? vol.129, pp.3, 2016, https://doi.org/10.3171/2017.12.jns173041
  4. Letter to the Editor. Detection of MRI-negative Cushing’s disease by FLAIR imaging: is it reliable? vol.129, pp.3, 2016, https://doi.org/10.3171/2017.12.jns173041
  5. Potential utility of FLAIR in MRI-negative Cushing’s disease vol.129, pp.3, 2016, https://doi.org/10.3171/2017.4.jns17234
  6. Contrast-enhanced fluid-attenuated inversion recovery magnetic resonance imaging was useful in detecting inflammation of the meninges in neuropsychiatric systemic lupus erythematosus: a case report vol.58, pp.6, 2016, https://doi.org/10.5692/clinicalneurol.cn-001175
  7. Does Multiphasic Contrast Enhanced Fluid Attenuated Inversion Recovery Magnetic Resonance Imaging Enhance the Detectability of Small Intracerebral Metastases? vol.78, pp.3, 2018, https://doi.org/10.3348/jksr.2018.78.3.179
  8. To Compare Diagnostic Ability of Contrast-Enhanced Three-Dimensional T1-SPACE with Three-Dimensional Fluid-Attenuated Inversion Recovery and Three-Dimensional T1-Magnetization Prepared Rapid Gradient vol.10, pp.1, 2016, https://doi.org/10.4103/jnrp.jnrp_157_18
  9. Subacute cortical infarct: the value of contrast-enhanced FLAIR images in inconclusive DWI vol.52, pp.4, 2019, https://doi.org/10.1590/0100-3984.2017.0188
  10. Reversible Cerebral Vasoconstriction Syndrome Presenting as Transient Vessel Wall Enhancement on Contrast-Enhanced Fluid-Attenuated Inversion Recovery Images: A Case Report and Literature Review vol.81, pp.5, 2016, https://doi.org/10.3348/jksr.2019.0144
  11. Ultrasound Neuromodulation: Mechanisms and the Potential of Multimodal Stimulation for Neuronal Function Assessment vol.8, pp.None, 2016, https://doi.org/10.3389/fphy.2020.00150
  12. ­­­­­Comparison of T1-Post and FLAIR-Post MRI for identification of traumatic meningeal enhancement in traumatic brain injury patients vol.15, pp.7, 2016, https://doi.org/10.1371/journal.pone.0234881
  13. A New Tumor Delineation Method for Brain Metastases Radiotherapy by Jointly Referring to Contrast-Enhanced T1-Weighted and Fluid-Attenuated Inversion Recovery MRI vol.12, pp.7, 2020, https://doi.org/10.7759/cureus.9106
  14. Hyperintense Acute Reperfusion Marker on FLAIR in Patient with Possible Contrast-Induced Encephalopathy Following Cerebral Angiography vol.38, pp.4, 2020, https://doi.org/10.17340/jkna.2020.4.10
  15. The value of contrast-enhanced FLAIR magnetic resonance imaging in detecting meningeal abnormalities in suspected cases of meningitis compared to conventional contrast-enhanced T1WI sequences vol.51, pp.1, 2020, https://doi.org/10.1186/s43055-020-00348-2
  16. Noninvasive Characterization of Human Glymphatics and Meningeal Lymphatics in an in vivo Model of Blood–Brain Barrier Leakage vol.89, pp.1, 2016, https://doi.org/10.1002/ana.25928
  17. Signal intensity pattern of the normal oculomotor nerve on contrast-enhanced 3D FLAIR at 3.0 T MRI vol.34, pp.2, 2021, https://doi.org/10.1177/1971400920970918
  18. High-resolution MR imaging of cranial neuropathy in patients with anti-GQ1b antibody syndrome vol.423, pp.None, 2016, https://doi.org/10.1016/j.jns.2021.117380
  19. Enhancement of subarachnoid space during magnetic resonance imaging of endolymphatic hydrops: a case report vol.49, pp.7, 2016, https://doi.org/10.1177/03000605211029788
  20. The role T1-weighted fluid attenuated inversion recovery (FLAIR) post contrast enhancement to improve image quality on MRI brain vol.1943, pp.1, 2021, https://doi.org/10.1088/1742-6596/1943/1/012052
  21. The Clinical Significance of the Hyperintense Acute Reperfusion Marker Sign in Subacute Infarction Patients vol.11, pp.11, 2016, https://doi.org/10.3390/diagnostics11112161
  22. Role of contrast-enhanced FLAIR MRI in diagnosis of intracranial lesions vol.57, pp.1, 2016, https://doi.org/10.1186/s41983-021-00360-x