DOI QR코드

DOI QR Code

Hypertriglyceridemia and Cardiovascular Diseases: Revisited

  • Han, Seung Hwan (Department of Cardiology, Gachon University Gil Medical Center) ;
  • Nicholls, Stephen J (Department of Cardiology, South Australian Health and Medical Research Institute, University of Adelaide) ;
  • Sakuma, Ichiro (Department of Cardiovascular Medinine, Hokko Memorial Clinic) ;
  • Zhao, Dong (Department of Epidemiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University) ;
  • Koh, Kwang Kon (Department of Cardiology, Gachon University Gil Medical Center)
  • Received : 2016.01.06
  • Accepted : 2016.01.26
  • Published : 2016.03.30

Abstract

Residual cardiovascular risk and failure of high density lipoprotein cholesterol raising treatment have refocused interest on targeting hypertriglyceridemia. Hypertriglyceridemia, triglyceride-rich lipoproteins, and remnant cholesterol have demonstrated to be important risk factors for cardiovascular disease; this has been demonstrated in experimental, genetic, and epidemiological studies. Fibrates can reduce cardiovascular event rates with or without statins. High dose omega-3 fatty acids continue to be evaluated and new specialized targeting treatment modulating triglyceride pathways, such as inhibition of apolipoprotein C-III and angiopoietin-like proteins, are being tested with regard to their effects on lipid profiles and cardiovascular outcomes. In this review, we will discuss the role of hypertriglyceridemia, triglyceride-rich lipoproteins and remnant cholesterol on cardiovascular disease, and the potential implications for treatment stargeting hypertriglyceridemia.

Keywords

References

  1. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol 2014;63(25 Pt B):2889-934. https://doi.org/10.1016/j.jacc.2013.11.002
  2. Mora S, Wenger NK, DeMicco DA, et al. Determinants of residual risk in secondary prevention patients treated with high- versus low-dose statin therapy: the treating to new targets (TNT) study. Circulation 2012;125:1979-87. https://doi.org/10.1161/CIRCULATIONAHA.111.088591
  3. Lim S, Park YM, Sakuma I, Koh KK. How to control residual cardiovascular risk despite statin treatment: Focusing on HDL-cholesterol. Int J Cardiol 2013;166:8-14. https://doi.org/10.1016/j.ijcard.2012.03.127
  4. Koh KK. How to control residual risk during statin era? J Am Coll Cardiol 2015;66:1848. https://doi.org/10.1016/j.jacc.2015.07.072
  5. Mora S, Caulfield MP, Wohlgemuth J, et al. Atherogenic lipoprotein subfractions determined by ion mobility and first cardiovascular events after random allocation to high-intensity statin or placebo: the JUPITER trial. Circulation 2015;132:2220-9. https://doi.org/10.1161/CIRCULATIONAHA.115.016857
  6. Lee MH, Kim HC, Ahn SV, et al. Prevalence of dyslipidemia among Korean adults: Korea National Health and Nutrition Survey 1998-2005. Diabetes Metab J 2012;36:43-55. https://doi.org/10.4093/dmj.2012.36.1.43
  7. Kim K. Distribution of blood cholesterol profile in untreated Korean population. Korean Circ J 2015;45:108-9. https://doi.org/10.4070/kcj.2015.45.2.108
  8. Park JH, Lee MH, Shim JS, et al. Effects of age, sex, and menopausal status on blood cholesterol profile in the Korean population. Korean Circ J 2015;45:141-8. https://doi.org/10.4070/kcj.2015.45.2.141
  9. Ren J, Grundy SM, Liu J, et al. Long-term coronary heart disease risk associated with very-low-density lipoprotein cholesterol in Chinese: the results of a 15-Year Chinese Multi-Provincial Cohort Study (CMCS). Atherosclerosis 2010;211:327-32. https://doi.org/10.1016/j.atherosclerosis.2010.02.020
  10. Lim S, Shin H, Song JH, et al. Increasing prevalence of metabolic syndrome in Korea: the Korean National Health and Nutrition Examination Survey for 1998-2007. Diabetes Care 2011;34:1323-8. https://doi.org/10.2337/dc10-2109
  11. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet 2014;384:626-35. https://doi.org/10.1016/S0140-6736(14)61177-6
  12. Nordestgaard BG, Wootton R, Lewis B. Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo. Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler Thromb Vasc Biol 1995;15:534-42. https://doi.org/10.1161/01.ATV.15.4.534
  13. Goldberg IJ, Eckel RH, McPherson R. Triglycerides and heart disease: still a hypothesis? Arterioscler Thromb Vasc Biol 2011;31:1716-25. https://doi.org/10.1161/ATVBAHA.111.226100
  14. Proctor SD, Vine DF, Mamo JC. Arterial retention of apolipoprotein B(48)- and B(100)-containing lipoproteins in atherogenesis. Curr Opin Lipidol 2002;13:461-70. https://doi.org/10.1097/00041433-200210000-00001
  15. Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011;32:1345-61. https://doi.org/10.1093/eurheartj/ehr112
  16. Varbo A, Benn M, Tybjaerg-Hansen A, Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 2013;61:427-36. https://doi.org/10.1016/j.jacc.2012.08.1026
  17. Hegele RA, Ginsberg HN, Chapman MJ, et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol 2014;2:655-66. https://doi.org/10.1016/S2213-8587(13)70191-8
  18. Rapp JH, Lespine A, Hamilton RL, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb 1994;14:1767-74. https://doi.org/10.1161/01.ATV.14.11.1767
  19. Alaupovic P, Mack WJ, Knight-Gibson C, Hodis HN. The role of triglyceride-rich lipoprotein families in the progression of atherosclerotic lesions as determined by sequential coronary angiography from a controlled clinical trial. Arterioscler Thromb Vasc Biol 1997;17:715-22. https://doi.org/10.1161/01.ATV.17.4.715
  20. Zheng XY, Liu L. Remnant-like lipoprotein particles impair endothelial function: direct and indirect effects on nitric oxide synthase. J Lipid Res 2007;48:1673-80. https://doi.org/10.1194/jlr.R700001-JLR200
  21. Alipour A, van Oostrom AJ, Izraeljan A, et al. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 2008;28:792-7. https://doi.org/10.1161/ATVBAHA.107.159749
  22. Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW, Rutledge JC. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Res 2009;50:204-13. https://doi.org/10.1194/jlr.M700505-JLR200
  23. Moyer MP, Tracy RP, Tracy PB, van't Veer Cvt, Sparks CE, Mann KG. Plasma lipoproteins support prothrombinase and other procoagulant enzymatic complexes. Arterioscler Thromb Vasc Biol 1998;18:458-65. https://doi.org/10.1161/01.ATV.18.3.458
  24. Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000;342:1792-801. https://doi.org/10.1056/NEJM200006153422406
  25. Patel A, Barzi F, Jamrozik K, et al. Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific Region. Circulation 2004;110:2678-86. https://doi.org/10.1161/01.CIR.0000145615.33955.83
  26. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease 10,158 incident cases among 262,525 participants in 29 western prospective studies. Circulation 2007;115:450-8. https://doi.org/10.1161/CIRCULATIONAHA.106.637793
  27. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007;298:299-308. https://doi.org/10.1001/jama.298.3.299
  28. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007;298:309-16. https://doi.org/10.1001/jama.298.3.309
  29. Langsted A, Freiberg J, Tybjaerg-Hansen A, Schnohr P, Jensen GB, Nordestgaard B. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med 2011;270:65-75. https://doi.org/10.1111/j.1365-2796.2010.02333.x
  30. Jorgensen AB, Frikke-Schmidt R, West AS, Grande P, Nordestgaard BG, Tybjaerg-Hansen A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J 2013;34:1826-33. https://doi.org/10.1093/eurheartj/ehs431
  31. Emerging Risk Factors Collaboration, Di Angelantoni E, Sarwar N, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009;302:1993-2000. https://doi.org/10.1001/jama.2009.1619
  32. Rosenson RS, Davidson MH, Hirsh BJ, Kathiresan S, Gaudet D. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. J Am Coll Cardiol 2014;64:2525-40. https://doi.org/10.1016/j.jacc.2014.09.042
  33. Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol 2015;65:2267-75. https://doi.org/10.1016/j.jacc.2015.03.544
  34. Jackson KG, Poppitt SD, Minihane AM. Postprandial lipemia and cardiovascular disease risk: interrelationships between dietary, physiological and genetic determinants. Atherosclerosis 2012;220:22-33. https://doi.org/10.1016/j.atherosclerosis.2011.08.012
  35. Rip J, Nierman MC, Ross CJ, et al. Lipoprotein lipase S447X a naturally occurring gain-of-function mutation. Arterioscler Thromb Vasc Biol 2006;26:1236-45. https://doi.org/10.1161/01.ATV.0000219283.10832.43
  36. Humphries SE, Nicaud V, Margalef J, Tiret L, Talmud PJ. Lipoprotein lipase gene variation is associated with a paternal history of premature coronary artery disease and fasting and postprandial plasma triglycerides: the European Atherosclerosis Research Study (EARS). Arterioscler Thromb Vasc Biol 1998;18:526-34. https://doi.org/10.1161/01.ATV.18.4.526
  37. Wittrup HH, Tybjaerg-Hansen A, Nordestgaard BG. Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation 1999;99:2901-7. https://doi.org/10.1161/01.CIR.99.22.2901
  38. Henderson HE, Kastelein JJ, Zwinderman AH, et al. Lipoprotein lipase activity is decreased in a large cohort of patients with coronary artery disease and is associated with changes in lipids and lipoproteins. J Lipid Res 1999;40:735-43.
  39. Lettre G, Palmer CD, Young T, et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe project. PLoS Genet 2011;7:e1001300. https://doi.org/10.1371/journal.pgen.1001300
  40. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010;466:707-13. https://doi.org/10.1038/nature09270
  41. Waterworth DM, Ricketts SL, Song K, et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol 2010;30:2264-76. https://doi.org/10.1161/ATVBAHA.109.201020
  42. Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 2013;45:1345-52. https://doi.org/10.1038/ng.2795
  43. Khetarpal SA, Rader DJ. Triglyceride-rich lipoproteins and coronary artery disease risk: new insights from human genetics. Arterioscler Thromb Vasc Biol 2015;35:e3-9. https://doi.org/10.1161/ATVBAHA.114.305172
  44. Ooi EM, Barrett PH, Chan DC, Watts GF. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond) 2008;114:611-24. https://doi.org/10.1042/CS20070308
  45. Gaudet D, Alexander VJ, Baker BF, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med 2015;373:438-47. https://doi.org/10.1056/NEJMoa1400283
  46. Kawakami A, Osaka M, Tani M, et al. Apolipoprotein CIII links hyperlipidemia with vascular endothelial cell dysfunction. Circulation 2008;118:731-42. https://doi.org/10.1161/CIRCULATIONAHA.108.784785
  47. Abe Y, Kawakami A, Osaka M, et al. Apolipoprotein CIII induces monocyte chemoattractant protein-1 and interleukin 6 expression via Toll-like receptor 2 pathway in mouse adipocytes. Arterioscler Thromb Vasc Biol 2010;30:2242-8. https://doi.org/10.1161/ATVBAHA.110.210427
  48. Qamar A, Khetarpal SA, Khera AV, Qasim A, Rader DJ, Reilly MP. Plasma apolipoprotein C-III levels, triglycerides, and coronary artery calcification in type 2 diabetics. Arterioscler Thromb Vasc Biol 2015;35:1880-8. https://doi.org/10.1161/ATVBAHA.115.305415
  49. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, Crosby J, Peloso GM, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 2014;371:22-31. https://doi.org/10.1056/NEJMoa1307095
  50. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med 2014;371:32-41. https://doi.org/10.1056/NEJMoa1308027
  51. Pennacchio LA, Olivier M, Hubacek JA, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 2001;294:169-73. https://doi.org/10.1126/science.1064852
  52. Tang Y, Sun P, Guo D, et al. A genetic variant c.553G > T in the apolipoprotein A5 gene is associated with an increased risk of coronary artery disease and altered triglyceride levels in a Chinese population. Atherosclerosis 2006;185:433-7. https://doi.org/10.1016/j.atherosclerosis.2005.06.026
  53. Johansen CT, Wang J, Lanktree MB, et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet 2010;42:684-7. https://doi.org/10.1038/ng.628
  54. Soufi M, Sattler AM, Kurt B, Schaefer JR. Mutation screening of the APOA5 gene in subjects with coronary artery disease. J Investig Med 2012;60:1015-9. https://doi.org/10.2310/JIM.0b013e3182686918
  55. Do R, Stitziel NO, Won HH, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 2015;518:102-6. https://doi.org/10.1038/nature13917
  56. Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors collaboration, Sarwar N, Sandhu MS, et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 2010;375:1634-39. https://doi.org/10.1016/S0140-6736(10)60545-4
  57. Han SH, Quon MJ, Koh KK. Beneficial vascular and metabolic effects of peroxisome proliferator-activated receptor-alpha activators. Hypertension 2005;46:1086-92. https://doi.org/10.1161/01.HYP.0000187900.36455.4c
  58. Han SH, Oh PC, Lim S, Eckel RH, Koh KK. Comparative cardiometabolic effects of fibrates and omega-3 fatty acids. Int J Cardiol 2013;167:2404-11. https://doi.org/10.1016/j.ijcard.2013.01.223
  59. Koh KK, Ahn JY, Han SH, et al. Effects of fenofibrate on lipoproteins, vasomotor function, and serological markers of inflammation, plaque stabilization, and hemostasis. Atherosclerosis 2004;174:379-83. https://doi.org/10.1016/j.atherosclerosis.2004.01.033
  60. Koh KK, Han SH, Quon MJ, Ahn JY, Shin EK. Beneficial effects of fenofibrate to improve endothelial dysfunction and raise adiponectin levels in patients with primary hypertriglyceridemia. Diabetes Care 2005;28:1419-24. https://doi.org/10.2337/diacare.28.6.1419
  61. Jun M, Foote C, Lv J, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 2010;375:1875-84. https://doi.org/10.1016/S0140-6736(10)60656-3
  62. Sacks FM, Carey VJ, Fruchart JC. Combination lipid therapy in type 2 diabetes. N Engl J Med 2010;363:692-4; author reply 694-5. https://doi.org/10.1056/NEJMc1006407
  63. Taher TH, Dzavik V, Reteff EM, Pearson GJ, Woloschuk BL, Francis GA. Tolerability of statin-fibrate and statin-niacin combination therapy in dyslipidemic patients at high risk for cardiovascular events. Am J Cardiol 2002;89:390-4. https://doi.org/10.1016/S0002-9149(01)02258-5
  64. Koh KK, Quon MJ, Han SH, et al. Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of combined hyperlipidemia. J Am Coll Cardiol 2005;45:1649-53. https://doi.org/10.1016/j.jacc.2005.02.052
  65. ACCORD Study Group, Ginsberg HN, Elam MB, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010;362:1563-74. https://doi.org/10.1056/NEJMoa1001282
  66. Koh KK, Quon MJ, Shin KC, et al. Significant differential effects of omega-3 fatty acids and fenofibrate in patients with hypertriglyceridemia. Atherosclerosis 2012;220:537-44. https://doi.org/10.1016/j.atherosclerosis.2011.11.018
  67. Kromhout D, Giltay EJ, Geleijnse JM; Alpha Omega Trial Group. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med 2010;363:2015-26. https://doi.org/10.1056/NEJMoa1003603
  68. Kwak SM, Myung SK, Lee YJ, Seo HG; Korean Meta-analysis Study Group. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials. Arch Intern Med 2012;172:686-94. https://doi.org/10.1001/archinternmed.2012.262
  69. Kaushik M, Mozaffarian D, Spiegelman D, Manson JE, Willett WC, Hu FB. Long-chain omega-3 fatty acids, fish intake, and the risk of type 2 diabetes mellitus. Am J Clin Nutr 2009:90:613-20. https://doi.org/10.3945/ajcn.2008.27424
  70. Djousse L, Gaziano JM, Buring JE, Lee IM. Dietary omega-3 fatty acids and fish consumption and risk of type 2 diabetes. Am J Clin Nutr 2011;93:143-50. https://doi.org/10.3945/ajcn.110.005603
  71. Oh PC, Koh KK, Sakuma I, et al. Omega-3 fatty acid therapy dosedependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia. Int J Cardiol 2014;176:696-702. https://doi.org/10.1016/j.ijcard.2014.07.075
  72. Rischio and Prevenzione Investigators. Efficacy of n-3 polyunsaturated fatty acids and feasibility of optimizing preventive strategies in patients at high cardiovascular risk: rationale, design and baseline characteristics of the Rischio and Prevenzione study, a large randomised trial in general practice. Trials 2010;11:68. https://doi.org/10.1186/1745-6215-11-68
  73. Manson JE, Bassuk SS, Lee IM, et al. The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials 2012;33:159-71. https://doi.org/10.1016/j.cct.2011.09.009
  74. Chapman MJ, Redfern JS, McGovern ME, Giral P. Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol Ther 2010;126:314-45. https://doi.org/10.1016/j.pharmthera.2010.01.008
  75. Clofibrate and niacin in coronary heart disease. JAMA 1975;231:360-81. https://doi.org/10.1001/jama.1975.03240160024021
  76. Canner PL, Berge KG, Wenger NK, et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol 1986;8:1245-55. https://doi.org/10.1016/S0735-1097(86)80293-5
  77. HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high risk patients. N Engl J Med 2014;371:203-12. https://doi.org/10.1056/NEJMoa1300955
  78. Crouse JR 3rd. Hypertriglyceridemia: a contraindication to the use of bile acid binding resins. Am J Med 1987;83:243-8. https://doi.org/10.1016/0002-9343(87)90692-9
  79. Chapman MJ, Le Goff W, Guerin M, Kontush A. Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur Heart J 2010;31:149-64. https://doi.org/10.1093/eurheartj/ehp399
  80. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357:2109-22. https://doi.org/10.1056/NEJMoa0706628
  81. Schwartz GC, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. New Engl J Med 2012;367:2089-99. https://doi.org/10.1056/NEJMoa1206797
  82. Nicholls SJ, Lincoff AM, Barter PJ, et al. Assessment of the clinical effects of cholesteryl ester transfer protein inhibition with evacetrapib in patients at high-risk for vascular outcomes: rationale and design of the ACCELERATE trial. Am Heart J 2015;170:1061-9. https://doi.org/10.1016/j.ahj.2015.09.007
  83. Korstanje R, Eriksson P, Samnegard A, et al. Locating Ath8, a locus for murine atherosclerosis susceptibility and testing several of its candidate genes in mice and humans. Atherosclerosis 2004;177:443-50. https://doi.org/10.1016/j.atherosclerosis.2004.08.006
  84. Hatsuda S, Shoji T, Shinohara K, et al. Association between plasma angiopoietin-like protein 3 and arterial wall thickness in healthy subjects. J Vasc Res 2007;44:61-6. https://doi.org/10.1159/000098153
  85. Talmud PJ, Smart M, Presswood E, et al. ANGPTL4 E40K and T266M: effects on plasma triglyceride and HDL levels, postprandial responses, and CHD risk. Arterioscler Thromb Vasc Biol 2008;28:2319-25. https://doi.org/10.1161/ATVBAHA.108.176917
  86. Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years' treatment with lomitapide. JAMA Intern Med 2014;174:443-7. https://doi.org/10.1001/jamainternmed.2013.13309

Cited by

  1. Structural design approaches for creating fat droplet and starch granule mimetics vol.8, pp.2, 2016, https://doi.org/10.1039/c6fo00764c
  2. Best Treatment Strategies With Statins to Maximize the Cardiometabolic Benefits vol.82, pp.4, 2016, https://doi.org/10.1253/circj.cj-17-1445
  3. Strategies to Overcome Residual Risk During Statins Era vol.83, pp.10, 2016, https://doi.org/10.1253/circj.cj-19-0624
  4. Chronic Sucrose Consumption Adversely Altered Antioxidant Status, Lipid Profile and Peroxidation of Rats Testes vol.19, pp.5, 2016, https://doi.org/10.3923/jbs.2019.354.362
  5. Identification of hypertriglyceridemia based on bone density, body fat mass, and anthropometry in a Korean population vol.19, pp.None, 2019, https://doi.org/10.1186/s12872-019-1050-2
  6. Short-Term Efficacy (at 12 Weeks) and Long-Term Safety (up to 52 Weeks) of Omega-3 Free Fatty Acids (AZD0585) for the Treatment of Japanese Patients With Dyslipidemia ― A Randomized, Double-Blind, Pl vol.84, pp.6, 2016, https://doi.org/10.1253/circj.cj-19-0358
  7. Lipoprotein(a) and Cardiovascular Diseases ― Revisited ― vol.84, pp.6, 2016, https://doi.org/10.1253/circj.cj-20-0051
  8. Cathepsin B Is Implicated in Triglyceride (TG)-Induced Cell Death of Macrophage vol.52, pp.3, 2016, https://doi.org/10.15324/kjcls.2020.52.3.245
  9. Design and rationale of a randomized control trial testing the effectiveness of combined therapy with STAtin plus FENOfibrate and statin alone in non-diabetic, combined dyslipidemia patients with non- vol.21, pp.1, 2016, https://doi.org/10.1186/s13063-020-04291-5
  10. New Trends in Dyslipidemia Treatment vol.85, pp.6, 2021, https://doi.org/10.1253/circj.cj-20-1037
  11. Genome-Wide Identification of Rare and Common Variants Driving Triglyceride Levels in a Nevada Population vol.12, pp.None, 2016, https://doi.org/10.3389/fgene.2021.639418
  12. Prospective Analysis of Lipid Variations in Hyperthyroid Subjects from Lahore, Pakistan vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9936782
  13. Consumption of Sourdough Breads Improves Postprandial Glucose Response and Produces Sourdough-Specific Effects on Biochemical and Inflammatory Parameters and Mineral Absorption vol.69, pp.10, 2016, https://doi.org/10.1021/acs.jafc.0c07200