DOI QR코드

DOI QR Code

Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory

  • Bourada, Fouad (Laboratoire des Structures Intelligentes, Departement de Genie Civil, Institut des Sciences et de la Technologie, Centre Universitaire de Ain Temouchent) ;
  • Amara, Khaled (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2016.04.04
  • Accepted : 2016.08.10
  • Published : 2016.08.30

Abstract

The current research presents a buckling analysis of isotropic and orthotropic plates by proposing a new four variable refined plate theory. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only four variables. The governing equations for buckling analysis are deduced by utilizing the principle of virtual works. The analytical solution of a simply supported rectangular plate under the axial loading has been determined via the Navier method. Numerical investigations are performed by using the proposed model and the obtained results are compared with CPT solutions, FSDT solutions, and the existing exact solutions in the literature. It can be concluded that the developed four variable refined plate theory, which does not use shear correction coefficient, is not only simple but also comparable to the FSDT.

Keywords

References

  1. Afsharmanesh, B., Ghaheri, A. and Taheri-Behrooz, F. (2014), "Buckling and vibration of laminated composite circular plate on Winkler-type foundation", Steel Compos. Struct., Int. J., 17(1), 1-19. https://doi.org/10.12989/scs.2014.17.1.001
  2. Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Environ., 4(2), 59-64.
  3. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  4. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  5. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  6. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  7. Altunsaray, E. and Bayer, I. (2014), "Buckling of symmetrically laminated quasi-isotropic thin rectangular plates", Steel Compos. Struct., Int. J., 17(3), 305-320. https://doi.org/10.12989/scs.2014.17.3.305
  8. Ambartsumyan, S.A. (1970), Theory of Anisotropic Plates, Technomic Publishing Company, Westport, CT, USA.
  9. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  10. Bachir Bouiadjra, R., Adda Bedia, E.A., Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., Int. J., 48(4), 547-567. https://doi.org/10.12989/sem.2013.48.4.547
  11. Bakora, A. and Tounsi, A. (2015)," Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., Int. J., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085
  12. Bank, L. and Yin, J. (1996), "Buckling of orthotropic plates with free and rotationally restrained unloaded edges", Thin-Wall. Struct., 24(1), 83-96. https://doi.org/10.1016/0263-8231(95)00036-4
  13. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  14. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4). [In Press]
  15. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  16. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  17. Benachour, A., Daouadji, H.T., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  18. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  19. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  20. Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle ply laminated rectangular plates", Int. J. Solid. Struct., 14(6), 465-473. https://doi.org/10.1016/0020-7683(78)90011-2
  21. Bhimaraddi, A. and Stevens, L.K. (1984), "A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates", J. Appl. Mech.-T ASME, 51(1), 195-198. https://doi.org/10.1115/1.3167569
  22. Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
  23. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  24. Bouderba, B., Houari, M.S.A. and Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  25. Bouguenina, O., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., Int. J., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
  26. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  27. Boukhari, A., Ait Atmane, H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  28. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  29. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  30. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Method., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  31. Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2016), "Thermomechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., Int. J., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617
  32. Dahsin, L. and Xiaoyu, L. (1996), "An overall view of laminate theories based on displacement hypothesis", J. Compos. Mater., 30(14), 1539-1561. https://doi.org/10.1177/002199839603001402
  33. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  34. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64.
  35. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49(4), 795-810. https://doi.org/10.1007/s11012-013-9827-3
  36. Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., Int. J., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507
  37. Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y. and Adda Bedia, E.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., Int. J., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315
  38. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  39. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  40. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
  41. Hwang, I. and Lee, J.S. (2006), "Buckling of orthotropic plates under various in-plane loads", KSCE J. Civil Eng., 10(5), 349-356. https://doi.org/10.1007/BF02830088
  42. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135007.
  43. Kang, J.H. and Leissa, A.W. (2005), "Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges", Int. J. Solid. Struct., 42(14), 4220-4238. https://doi.org/10.1016/j.ijsolstr.2004.12.011
  44. Kant, T. (1989), "A higher-order theory for free vibration of unsymmetrically laminated composite and sandwich plates-finite element evaluations", Comput. Struct., 32(5), 1125-1132. https://doi.org/10.1016/0045-7949(89)90414-8
  45. Kant, T. and Khare, R.K. (1997), "A higher-order facet quadrilateral composite shell element", Int. J. Numer. Meth. Eng., 40(24), 4477-4499. https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24<4477::AID-NME229>3.0.CO;2-3
  46. Kant, T. and Pandya, B.N. (1988), "A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates", Compos. Struct., 9(3), 215-264. https://doi.org/10.1016/0263-8223(88)90015-3
  47. Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
  48. Kar, V.R. and Panda, S.K. (2014), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., Int. J., 53(4), 661-679.
  49. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., Int. J., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
  50. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
  51. Kim, S.E., Thai, H.T. and Lee, J. (2009), "Buckling analysis of plates using the two variable refined plate theory", Thin-Wall. Struct., 47(4), 455-462. https://doi.org/10.1016/j.tws.2008.08.002
  52. Klouche Djedid, I., Benachour, A., Houari, M.S.A., Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., Int. J., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021
  53. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  54. Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mech. Res. Commun., 7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X
  55. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016a), "Geometrically nonlinear flexural analysis of hygrothermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9
  56. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606
  57. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  58. Mallikarjuna, M. and Kant, T. (1993), "A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches", Compos. Struct., 23(4), 293-312. https://doi.org/10.1016/0263-8223(93)90230-N
  59. Mantari, J.L. and Granados, E.V. (2015), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin-Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015
  60. Matsunaga, H. (2009), "Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory", Compos. Struct., 90(1), 76-86. https://doi.org/10.1016/j.compstruct.2009.02.004
  61. Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
  62. Meksi, A., Benyoucef, S., Houari, M.S.A. and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., Int. J., 53(6), 1215-1240. https://doi.org/10.12989/sem.2015.53.6.1215
  63. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  64. Merazi, M., Hadji, L., Daouadji, T.H., Tounsi, A. and Adda Bedia, E.A. (2015), "A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position", Geomech. Eng., Int. J., 8(3), 305-321. https://doi.org/10.12989/gae.2015.8.3.305
  65. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech.-T ASME, 18(1), 31-38.
  66. Mohan, P.R., Naganarayana, B.P. and Prathap, G. (1994), "Consistent and variationally correct finite elements for higher-order laminated plate theory", Compos. Struct., 29(4), 445-456. https://doi.org/10.1016/0263-8223(94)90113-9
  67. Mouaici, F., Benyoucef, S., Ait Atmane, H. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory", Wind Struct., Int. J., 22(4), 429-454. https://doi.org/10.12989/was.2016.22.4.429
  68. Musa, I.A. (2016), "Buckling of plates including effect of shear deformations: A hyperelastic formulation", Struct. Eng. Mech., Int. J., 57(6), 1107-1124. https://doi.org/10.12989/sem.2016.57.6.1107
  69. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 629-640. https://doi.org/10.1007/s11029-013-9379-6
  70. Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091
  71. Noor, A.K. and Burton, W.S. (1989a), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42(1), 1-13. https://doi.org/10.1115/1.3152418
  72. Noor, A.K. and Burton, W.S. (1989b), "Stress and free vibration analysis of multilayer composite plates", Compos. Struct., 11, 183-204. https://doi.org/10.1016/0263-8223(89)90058-5
  73. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713
  74. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9
  75. Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloidal shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-384. https://doi.org/10.1016/j.compstruct.2009.06.004
  76. Panda, S.K. and Singh, B.N. (2010a), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1
  77. Panda, S.K. and Singh, B.N. (2010b), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proceedings of IMechE Part C: Journal of Mechanical Engineering and Science, 224(4), 757-769.
  78. Panda, S.K. and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM", Finite Elem. Anal. Des., 47(4), 378-386. https://doi.org/10.1016/j.finel.2010.12.008
  79. Panda, S.K. and Singh, B.N. (2013a), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibres", Nonlinear Dyn., 74(1), 395-418. https://doi.org/10.1007/s11071-013-0978-5
  80. Panda, S.K. and Singh, B.N. (2013b), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM", Mech. Based Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
  81. Panda, S.K. and Singh, B.N. (2013c), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007
  82. Panda, S.K. and Singh, B.N. (2013d), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097
  83. Rajanna, T., Banerjee, S., Desai, Y.M. and Prabhakara, D.L. (2016), "Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads", Steel Compos. Struct., Int. J., 21(1), 37-55. https://doi.org/10.12989/scs.2016.21.1.037
  84. Reddy, J.N. (1979), "Free vibration of antisymmetric angle ply laminated plates including transverse shear deformation by the finite element method", J. Sound Vib., 66(4), 565-576. https://doi.org/10.1016/0022-460X(79)90700-4
  85. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  86. Reddy, J.N. (1990), "A review of refined theories of laminated composite plates", Shock Vib. Dig., 22(7), 3-17. https://doi.org/10.1177/058310249002200703
  87. Reddy, J.N. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct., 25(1-4), 21-35. https://doi.org/10.1016/0263-8223(93)90147-I
  88. Reddy, J.N. (1997), Mechanics of Laminated Composite Plate: Theory and Analysis, CRC Press, New York, NY, USA.
  89. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech.-T ASME, 12(2), 69-77.
  90. Ren, J.G. (1986), "A new theory of laminated plate", Compos. Sci. Technol., 26(3), 225-239. https://doi.org/10.1016/0266-3538(86)90087-4
  91. Sadoune, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., Int. J., 17(3), 321-338. https://doi.org/10.12989/scs.2014.17.3.321
  92. Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., Int. J., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221
  93. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., Int. J., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289
  94. Sallai, B., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), "Analytical solution for bending analysis of functionally graded beam", Steel Compos. Struct., Int. J., 19(4), 829-841. https://doi.org/10.12989/scs.2015.19.4.829
  95. Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x
  96. Sun, C.T. and Whitney, J.M. (1973), "Theories for the dynamic response of laminated plates", AIAA J., 11(2), 178-183. https://doi.org/10.2514/3.50448
  97. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Solids, 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003
  98. Tagrara, S.H., Benachour, A., Bachir Bouiadjra, M. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  99. Tebboune, W., Benrahou, K.H., Houari, M.S.A. and Tounsi, A. (2015), "Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory", Steel Compos. Struct., Int. J., 18(2), 443-465. https://doi.org/10.12989/scs.2015.18.2.443
  100. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York, NY, USA.
  101. Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, New York, NY, USA.
  102. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  103. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., Int. J., [In press].
  104. Viswanathan, K.K., Javed, S. and Abdul Aziz, Z. (2013), "Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory", Struct. Eng. Mech., Int. J., 45(2), 259-275. https://doi.org/10.12989/sem.2013.45.2.259
  105. Whitney, J.M. (1969), "The effect of transverse shear deformation on the bending of laminated plates", J. Compos. Mater., 3(3), 534-547. https://doi.org/10.1177/002199836900300316
  106. Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech.-T ASME, 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
  107. Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022
  108. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on postbuckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., Int. J., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753
  109. Yan, P.C., Norris, C.H. and Stavsky, Y. (1966), "Elastic wave propagation in heterogeneous plates", Int. J. Solid. Struct., 2(4), 665-684. https://doi.org/10.1016/0020-7683(66)90045-X
  110. Yousefitabar, M. and Matapouri, M.Kh. (2016), "Thermally induced buckling of thin annular FGM plates", J. Brazil. Soc. Mech. Sci. Eng., 1-12.
  111. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  112. Zidi, M., Tounsi, A., Houari M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0784-x
  2. Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0922-5
  3. Homogenization of hexagonal and re-entrant hexagonal structures and wave propagation of the sandwich plates with symplectic analysis vol.114, 2017, https://doi.org/10.1016/j.compositesb.2017.01.048
  4. A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
  5. Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory 2017, https://doi.org/10.1177/1077546317711537
  6. Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM 2017, https://doi.org/10.1080/19475411.2017.1377312
  7. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  8. Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium vol.53, pp.6, 2018, https://doi.org/10.1007/s11029-018-9708-x
  9. Free vibration investigation of nano mass sensor using differential transformation method vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0796-6
  10. Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams vol.322, 2017, https://doi.org/10.1016/j.cma.2017.05.007
  11. Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads vol.161, 2017, https://doi.org/10.1016/j.compstruct.2016.10.135
  12. A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
  13. A novel four variable refined plate theory for laminated composite plates vol.22, pp.4, 2016, https://doi.org/10.12989/scs.2016.22.4.713
  14. Isogeometric buckling analysis of composite variable-stiffness panels vol.165, 2017, https://doi.org/10.1016/j.compstruct.2017.01.016
  15. Elastic-plastic fracture of functionally graded circular shafts in torsion vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.299
  16. Buckling optimization of variable-stiffness composite panels based on flow field function vol.181, 2017, https://doi.org/10.1016/j.compstruct.2017.08.081
  17. In-plane and out-of-plane vibration modes of laminated composite beams with arbitrary lay-ups vol.66, 2017, https://doi.org/10.1016/j.ast.2017.02.027
  18. A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.257
  19. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes vol.514, 2017, https://doi.org/10.1016/j.physb.2017.03.030
  20. Free vibration of anisotropic single-walled carbon nanotube based on couple stress theory for different chirality vol.36, pp.3, 2017, https://doi.org/10.1177/0263092317700153
  21. Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.205
  22. Adaptive gradient-enhanced kriging model for variable-stiffness composite panels using Isogeometric analysis vol.58, pp.1, 2018, https://doi.org/10.1007/s00158-018-1988-1
  23. Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes vol.51, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
  24. Thermodynamic effect on the bending response of elastic foundation FG plate by using a novel four variable refined plate theory vol.41, pp.8, 2018, https://doi.org/10.1080/01495739.2018.1452169
  25. A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates vol.22, pp.5, 2016, https://doi.org/10.12989/scs.2016.22.5.975
  26. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2016, https://doi.org/10.12989/gae.2017.12.1.009
  27. A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
  28. A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation vol.23, pp.3, 2016, https://doi.org/10.12989/scs.2017.23.3.317
  29. Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model vol.5, pp.1, 2017, https://doi.org/10.12989/anr.2017.5.1.001
  30. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2016, https://doi.org/10.12989/sss.2017.19.3.289
  31. Wave propagation in functionally graded beams using various higher-order shear deformation beams theories vol.62, pp.2, 2016, https://doi.org/10.12989/sem.2017.62.2.143
  32. A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.401
  33. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2016, https://doi.org/10.12989/sss.2017.19.6.601
  34. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  35. Free vibrations of laminated composite plates using a novel four variable refined plate theory vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.603
  36. Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading vol.20, pp.2, 2016, https://doi.org/10.12989/cac.2017.20.2.229
  37. An original single variable shear deformation theory for buckling analysis of thick isotropic plates vol.63, pp.4, 2017, https://doi.org/10.12989/sem.2017.63.4.439
  38. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
  39. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
  40. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  41. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
  42. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  43. Fractional wave propagation in radially vibrating non-classical cylinder vol.13, pp.5, 2016, https://doi.org/10.12989/eas.2017.13.5.465
  44. A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2016, https://doi.org/10.12989/sem.2017.64.4.391
  45. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
  46. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
  47. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.735
  48. A novel four variable refined plate theory for wave propagation in functionally graded material plates vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.109
  49. Topology optimization for thin plate on elastic foundations by using multi-material vol.27, pp.2, 2018, https://doi.org/10.12989/scs.2018.27.2.177
  50. Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles vol.27, pp.2, 2016, https://doi.org/10.12989/scs.2018.27.2.201
  51. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2016, https://doi.org/10.12989/gae.2018.14.6.519
  52. Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.711
  53. A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations vol.30, pp.1, 2016, https://doi.org/10.12989/scs.2019.30.1.013
  54. A novel refined shear deformation theory for the buckling analysis of thick isotropic plates vol.69, pp.3, 2019, https://doi.org/10.12989/sem.2019.69.3.335
  55. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2016, https://doi.org/10.12989/sem.2019.69.5.511
  56. Buckling behavior of rectangular plates under uniaxial and biaxial compression vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.113
  57. Robust quasi 3D computational model for mechanical response of FG thick sandwich plate vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.571
  58. Conformable solution of fractional vibration problem of plate subjected to in-plane loads vol.28, pp.6, 2019, https://doi.org/10.12989/was.2019.28.6.347
  59. Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT vol.24, pp.4, 2016, https://doi.org/10.12989/cac.2019.24.4.347
  60. Multi-objective BESO topology optimization for stiffness and frequency of continuum structures vol.72, pp.2, 2016, https://doi.org/10.12989/sem.2019.72.2.181
  61. On the stability of isotropic and composite thick plates vol.33, pp.4, 2019, https://doi.org/10.12989/scs.2019.33.4.551
  62. Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model vol.33, pp.6, 2016, https://doi.org/10.12989/scs.2019.33.6.805
  63. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2016, https://doi.org/10.12989/was.2019.29.6.371
  64. Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle vol.8, pp.2, 2016, https://doi.org/10.12989/anr.2020.8.2.135
  65. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.197
  66. Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.129
  67. Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.537
  68. Dynamic responses of laminated beams under a moving load in thermal environment vol.35, pp.6, 2016, https://doi.org/10.12989/scs.2020.35.6.729
  69. Topology optimization of embedded and co-cured damping composite structure vol.7, pp.10, 2020, https://doi.org/10.1088/2053-1591/abbaf6
  70. Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions vol.23, pp.3, 2016, https://doi.org/10.1177/1099636219851281