Abstract
Regarding the research on lane recognition, continuous studies have been in progress for vehicles to navigate autonomously and to prevent traffic accidents, and lane recognition and detection have remarkably developed as different algorithms have appeared recently. Those studies were based on vision system and the recognition rate was improved. However, in case of driving at night or in rain, the recognition rate has not met the level at which it is satisfactory. Improving the weakness of the vision system-based lane recognition and detection, applying sensor convergence technology for the response after accident happened, among studies on lane detection, the study on the curve road detection was conducted. It proceeded to study on the curve road detection among studies on the lane recognition. In terms of the road detection, not only a straight road but also a curve road should be detected and it can be used in investigation on traffic accidents. Setting the threshold value of curvature from 0.001 to 0.06 showing the degree of the curve, it presented that it is able to compute the curve road.
차선의 인식을 위한 연구는 차량의 자율 주행 또는 교통사고의 예방을 위하여 지속적인 연구가 진행되고 있으며, 최근에는 다양한 알고리즘이 등장하여 차선 인식과 검출은 비약적으로 발전하였다. 이들 연구는 주로 비전 시스템 기반의 연구이며 인식률 또한 상당히 좋아 졌다. 그러나 야간의 도로 또는 우천 시에는 그 인식률이 아직 만족할 수준까지 도달하지는 못하였다. 본 논문은 이러한 비전 시스템 기반의 차선 인식 및 검출의 단점을 개선하여 사고 발생 후 대응을 위한 센서 융합 기술을 적용하여 차선 검출에 대한 연구를 수행하였고, 차선 검출에 대한 연구 중 곡선차선의 검출에 대한 연구를 진행하였다. 도로는 직선도로 뿐만 아니라 다양한 곡선도로까지 검출 가능해야 하며 이는 교통사고 조사 시에 활용될 수 있다. 커브의 굽은 정도를 나타내는 곡률의 임계값을 0.001~0.06로 하여 곡선자선을 산출해 낼 수 있음을 보였다.