DOI QR코드

DOI QR Code

Effect of Caron Nanofiber on Melt-crystallization Behavior of Polyketone

탄소나노섬유가 폴리케톤의 용융결정화거동에 미치는 영향

  • Kim, Sung Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Park, Jinho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Sang Cheol (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Jeong, Young Gyu (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 김성혜 (금오공과대학교 화학소재융합학부 고분자공학전공) ;
  • 박진호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이상철 (금오공과대학교 화학소재융합학부 고분자공학전공) ;
  • 정영규 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2016.06.30
  • Accepted : 2016.08.14
  • Published : 2016.08.31

Abstract

We report the influences of carbon nanofiber (CNF) on the melt-crystallization behavior and structures of polyketone (PK) composites, which were manufactured by a solution blending process. For this purpose, melt-crystallization experiments of neat PK and its composites, including 0.5 and 1.0 wt% CNFs, were carried out at different isothermal temperatures by using a differential scanning calorimeter and the results were analyzed using the Avrami equation. For all neat PK and PK/CNF composites, the Avrami index n remained unchanged, regardless of the isothermal crystallization temperatures ($T_c$), whereas the rate constant K and the inverse of crystallization half-time (${t_{1/2}}^{-1}$) increased noticeably with decreasing ${T_c}^{\prime}s$, indicating faster melt-crystallization rates at lower ${T_c}^{\prime}s$. It was further revealed that the melt-crystallization rates of PK/CNF composites were far greater than those of neat PK owing to the nucleating effect of CNF to the melt-crystallization of PK and that the composite with 1.0 wt% CNF exhibited slightly better crystallization rates, compared to the composite with 0.5 wt% CNF. Polarized optical microscopic images and X-ray diffraction patterns also support that CNF contributes to accelerate the melt-crystallization rates of PK without influencing the crystal structure of PK ${\beta}$-form.

Keywords

References

  1. F. D. Ballauf, O. D. D. H. C. Bayer, and L. D. Teichmann, "Verfahren zur herstellung von hoehermolekularen additionsprodukten aus niederen olefinen und kohlenoxyd", DE 863711 C, 1953.
  2. K. M. Lagaron, M. E. Vickers, A. K. Powell, and N. S. Davidson, "Crystalline Structure in Aliphatic Polyketones", Polymers, 2000, 41, 3011-3017. https://doi.org/10.1016/S0032-3861(99)00458-9
  3. W. C. J. Zuiderduin, D. S. Homminga, J. Huetink, and R. J. Gaymans, "Influence of Molecular Weight on the Fracture Properties of Aliphatic Polyketone Terpolymers", Polymer, 2003, 44, 6361-6370. https://doi.org/10.1016/S0032-3861(03)00635-9
  4. A. Backman, J. Lange, and M. S. Hedenqvist, "Transport Properties of Uniaxially Oriented Aliphatic Polyketone", J. Polym. Sci. Part B: Polym. Phys., 2004, 42, 947-955. https://doi.org/10.1002/polb.10688
  5. W. C. J. Zuiderduin, D. S. Homminga, J. Huetink, and R. J. Gaymans, "Influence of Copolymerisation on Fracture Behaviour of Aliphatic Polyketones", Polymer, 2005, 46, 1921-1934. https://doi.org/10.1016/j.polymer.2004.12.032
  6. H. M. El Ghanem, S. A. Jawad, M. H. Al-Saleh, Y. A. Hussain, and A. S. Abu-Surrah, "Electrical Impedance Spectroscopic Study of CNT/ethylene-alt-CO/propylene-alt-CO Polyketones Nanocomposite", J. Macromol. Sci., Part B: Phys., 2014, 53, 878-892. https://doi.org/10.1080/00222348.2013.861319
  7. M.-Y. Lim, J. Oh, H. J. Kim, K. Y. Kim, S.-S. Lee, and J.-C. Lee, "Effect of Antioxidant Grafted Graphene Oxides on the Mechanical and Thermal Properties of Polyketone Composites", Eur. Polym. J., 2015, 69, 156-167. https://doi.org/10.1016/j.eurpolymj.2015.06.009
  8. A. S. Abu-Surrah, E. Al-Ramahi, S. A. Jawad, A. B. Hallak, and Z. Khattari, "Effect of Multi-walled Carbon Nanotubes Aspect Ratio and Temperature on the Dielectric Behavior of Alternating Alkene-carbon Monoxide Polyketone Nanocomposites", Phys. B, 2015, 463, 76-81. https://doi.org/10.1016/j.physb.2015.01.039
  9. K. P. De Jong and J. W. Geus, "Carbon Nanofibers: Catalytic Synthesis and Applications", Catal. Rev.: Sci. Eng., 2000, 42, 481-510. https://doi.org/10.1081/CR-100101954
  10. L. Guadagno, M. Raimondo, V. Vittoria, L. Vertuccio, K. Lafdi, B. De Vivo, P. Lamberti, G. Spinelli, and V. Tucci, "The Role of Carbon Nanofiber Defects on the Electrical and Mechanical Properties of CNF-based Resins", Nanotechnology, 2013, 24, 305704. https://doi.org/10.1088/0957-4484/24/30/305704
  11. J. J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiraldi, and S. Kumar, "Processing and Properties of Poly(methyl methacrylate)/carbon Nano Fiber Composites", Compos., Part B, 2004, 35, 173-178. https://doi.org/10.1016/S1359-8368(03)00051-9
  12. G. Sui, W.-H. Zhong, M. A. Fuqua, and C. A. Ulven, "Crystalline Structure and Properties of Carbon Nanofiber Composites Prepared by Melt Extrusion", Macromol. Chem. Phys., 2007, 207, 1928-1936.
  13. G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, "A Review of the Fabrication and Properties of Vapor-grown Carbon Nanofiber/polymer Composites", Compos. Sci. Technol., 2007, 67, 1709-1718. https://doi.org/10.1016/j.compscitech.2006.06.015
  14. S. Lee, M.-S. Kim, and A. A. Ogale, "Crystallization Behavior of Carbon Nanofiber/linear Low Density Polyethylene Nanocomposites", J. Appl. Polym. Sci., 2007, 106, 2605-2614. https://doi.org/10.1002/app.26800
  15. S. Lee, J. R. Hahn, B.-C. Ku, and J. Kim, "Effect of Carbon Nanofiber Structure on Crystallization Kinetics of Polypropylene/carbon Nanofiber Composites", Bull. Korean Chem. Soc., 2011, 32, 2369-2376. https://doi.org/10.5012/bkcs.2011.32.7.2369
  16. M. Avrami, "Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei", J. Chem. Phys., 1940, 8, 212-224. https://doi.org/10.1063/1.1750631
  17. S. C. Lee, K. H. Yoon, and J. H. Kim, "Crystallization Kinetics of poly(butylene 2,6-naphthalate) and Its Copolyesters", Polymer J., 1997, 29, 1-6. https://doi.org/10.1295/polymj.29.1
  18. E. A. Klop, B. J. Lommerts, J. Veurink, J. Aerts, R. R. Van Ruijenbroek, "Polymorphism in Alternating Polyketones Studied by X-ray Diffraction and Calorimetry", J. Polym. Sci. Part B: Polym. Phys., 1995, 33, 315-326. https://doi.org/10.1002/polb.1995.090330217