DOI QR코드

DOI QR Code

고압 이산화탄소 반응에 의한 사암과 셰일의 물리적-미세구조적 변화

Variation of the Physical-microstructural Properties of Sandstone and Shale Caused by CO2 Reaction in High Pressure Condition

  • 박지환 (서울대학교 에너지자원신기술연구소) ;
  • 손진 (서울대학교 공과대학 에너지시스템공학부) ;
  • 박형동
  • 투고 : 2016.08.05
  • 심사 : 2016.08.19
  • 발행 : 2016.08.31

초록

이산화탄소 지중저장 기술은 이산화탄소 저감을 위한 가장 효과적인 방법 중 하나로 주목받고 있다. 본 연구에서는 이산화탄소 저장조건을 실험실에서 모사하였다. 사암과 셰일 시료를 1M NaCl 용액에 포화시킨 후 $45^{\circ}C$, 10기압의 조건에서 4주 동안 반응시키며 물리적 성질과 미세구조적 성질의 변화를 측정하였다. 부피, 밀도, 탄성파속도, 포아송비, 동탄성계수 등 모든 항목에서 사암 시료에 비해 셰일 시료의 물리적 성질 변화가 크게 나타났다. X선 단층촬영을 통한 미세구조 분석 결과 두 가지 시료 모두에서 공극의 총개수가 감소하였고, 각각의 공극들이 가지는 평균 부피, 평균 표면적, 평균 등가직경 등이 변화하였다. 이는 이산화탄소와 광물의 반응으로 인한 점토 광물의 팽창 및 유출이 원인인 것으로 판단된다. 본 연구결과는 이산화탄소 지중저장 시 발생되는 암반의 물리적, 미세구조적 변화를 예측하는 데 효과적으로 이용될 것으로 기대된다.

Underground $CO_2$ storage technology is one of the most effective methods to reduce atmospheric $CO_2$. In this study, $CO_2$ storage condition was simulated in the laboratory. Sandstone and shale specimens were saturated in 1M NaCl and were reacted at $45^{\circ}C$, 10 atm for 4 weeks. The physical and microstructural properties of rock specimens were measured. Variations on physical properties of shale specimens were bigger than those of sandstone specimens, such as volume, density, elastic wave velocity, Poisson's ratio and Young's modulus. Microstructure were analyzed using X-ray computed tomography. Total number of pores were decreased, and average volume, average area and average equivalent diameter of each pore were changed after $CO_2$ reaction. Swelling and leakage of clay mineral caused by $CO_2$-mineral reaction were the reason of changes. The results of this study can be applied to predict the physical and microstructural changes in underground $CO_2$ storage condition.

키워드

참고문헌

  1. Andrew, M., Bijeljic, B. and Blunt, M.J., 2014, Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates, Int. J. Greenh. Gas Control. 22, 1-14. https://doi.org/10.1016/j.ijggc.2013.12.018
  2. Barton, N., 2007, Rock quality, seismic velocity, attenuation and anisotropy, Taylor & Francis Group, London, UK, 756p.
  3. Brown, E.T., 1981, Rock Characterization, Testing and Monitoring: ISRM Suggested Methods, Pergamon Press, Oxford, UK, 211p.
  4. Choi, C.S. and Song, J.J., 2012, Swelling and mechanical property change of shale and sandstone in supercritical $CO_2$, Tunnel & Underground Space. 22.4, 266-275 (in Korean with English abstract). https://doi.org/10.7474/TUS.2012.22.4.266
  5. Dong, H. and Blunt, M.J., 2009, Pore-network extraction from micro-computerized-tomography images, Phys. Rev. E. 80.3, 036307. https://doi.org/10.1103/PhysRevE.80.036307
  6. Iglauer, S., Paluszny, A., Pentland, C.H. and Blunt, M.J., 2011, Residual $CO_2$ imaged with X-ray micro-tomography, Geophys. Res. Lett. 38, L21403.
  7. Jeong, G.C. and Takahashi, M., 2010, Analysis of porosity and distribution of pores in rocks by micro focus X-ray CT, The Journal of Engineering Geology. 20.4, 461-465 (in Korean with English abstract).
  8. Jung, H.B., Jansik, D. and Um, W., 2012, Imaging wellbore cement degradation by carbon dioxide under geologic sequestration conditions using X-ray computed microtomography, Environ. Sci. Technol. 47, 283-289.
  9. Kang, H., Baek, K., Wang, S., Park, J. and Lee, M., 2012, Study on the dissolution of sandstones in Gyeongsang Basin and the calculation of their dissolution coefficients under $CO_2$ injection condition, Econ. Environ. Geol. 45.6, 661-672 (in Korean with English abstract). https://doi.org/10.9719/EEG.2012.45.6.661
  10. Kim, J.H., 2015, Evaluation of operation design variables for geologic injection of carbon dioxide using numerical modeling, J. Geol. Soc. Korea. 51.2, 221-233 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.2.221
  11. Kim, K.Y., Oh, J.H., Kim, J.C. and Yum, B.W., 2011, Application of integrated coreflood X-ray scanner for $CO_2$ geological storage study, J. Geol. Soc. Korea. 47.6, 715-721 (in Korean with English abstract).
  12. Kintisch, E., 2016, Sea ice retreat said to ccelerate Greenland melting, Science. 352, 1377. https://doi.org/10.1126/science.352.6292.1377
  13. Ko, M., Kang, H., Wang, S. and Lee, M., 2011, The weathering process of olivine and chlorite reacted with the supercritical $CO_2$ on the sequestration condition, J. Geol. Soc. Korea. 47.6, 635-645 (in Korean with English abstract).
  14. KSRM, 2005, Standard test method of rock, CIR, Seoul, Korea, 123p.
  15. Lamy-Chappuis, B., Angus, D., Fisher, Q., Grattoni, C. and Yardley, W.D., 2014, Rapid porosity and permeability changes of calcareous sandstone due to $CO_2$-enriched brine injection, Geophys. Res. Lett. 41, 399-406. https://doi.org/10.1002/2013GL058534
  16. Lee, S. and Chang, C., 2015, Laboratory experimental study on fracture shear-activation induced by carbon dioxide injection, J. Geol. Soc. Korea. 51.3, 281-288 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.3.281
  17. Lee, S., Kim, J.M. and Kihm, J.H., 2015, Evaluation of impacts of grid refinement on numerical modeling of behavior and trapping mechanisms of carbon dioxide injected into deep storage formations, J. Geol. Soc. Korea. 51.2, 191-202 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.2.191
  18. Metz, B., Davidson, O., De Coninck, H., Loos, M. and Meyer, L., 2005, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, New York, USA, 431p.
  19. Nguyen, P., Fadaei, H. and Sinton, D., 2013, Microfluidics underground: A micro-core method for pore scale analysis of supercritical $CO_2$ reactive transport in saline aquifers, J. Fluid. Eng-T. ASME. 135, 021203. https://doi.org/10.1115/1.4023644
  20. Oh, J.H., Kim, K.Y., Kim, T. and Kim, J.C., 2010, A review of laboratory experiments for $CO_2$ geological storage, Econ. Environ, Geol. 43.3, 291-304 (in Korean with English abstract).
  21. Park, E., Wang, S., Kim, S. and Lee, M., 2014, The effects of the carbon dioxide stored in geological formations on the mineralogical and geochemical alterations of phyllosilicate minerals, J. Geol. Soc. Korea. 50.2, 231-240 (in Korean with English abstract).
  22. Park, J. and Park, H.D., 2016, An analysis of pore network of drilling core from Pohang Basin for geological storage of $CO_2$, Tunnel & Underground Space. 26.3, 181-191 (in Korean with English abstract). https://doi.org/10.7474/TUS.2016.26.3.181
  23. Perrin, J.C. and Benson, S., 2010, An experimental study on the influence of sub-core scale heterogeneities on $CO_2$ distribution in reservoir rocks, Transp. Porous Med. 82, 93-109. https://doi.org/10.1007/s11242-009-9426-x
  24. Saliu, M. and Lawal, A.I., 2014, Investigations of weathering effects on engineering properties of Supare granite gneiss, Journal of Mining World Express. 3, 53-62. https://doi.org/10.14355/mwe.2014.03.008
  25. Song, C.W., Son, M., Sohn, Y.K., Han, R., Shinn, Y.J. and Kim, J.C., 2015, A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea, J. Geol. Soc. Korea. 51.1, 53-66 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.1.53
  26. Van Aalst, M.K., 2006, The impacts of climate change on the risk of natural disasters, Disasters. 30.1, 5-18. https://doi.org/10.1111/j.1467-9523.2006.00303.x
  27. Wang, S., 2009, Geological carbon sequestration: Now and after, KIC News. 12.2, 21-30 (in Korean).
  28. Yoo, D.G., Kim, G.Y., Park, Y.C., Huh, D.G. and Yoon, C.H., 2007, Feasibility study for $CO_2$ geological sequestration in offshore Korean Peninsula, Journal of the Korean Institute of Mineral and Energy Resources Engineers. 44.6, 572-585 (in Korean with English abstract).