References
- Bibikova, M., M. Golic, K. G. Golic, and D. Carroll. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169-1175.
- Boman, I. A., G. Klemetsdal, T. Blichfeldt, O. Nafstad, and D. I. Vage. 2009. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries). Anim. Genet. 40:418-422. https://doi.org/10.1111/j.1365-2052.2009.01855.x
- Chu, X., Z. Zhang, J. Yabut, S. Horwitz, J. Levorse, X. Q. Li, L. Zhu, H. Lederman, R. Ortiga, J. Strauss, X. Li, K. A. Owens, J. Dragovic, T. Vogt, R. Evers, and M. K. Shin. 2012. Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases. Mol. Pharmacol. 81:220-227. https://doi.org/10.1124/mol.111.074179
- Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibe, J. Bouix, F. Caiment, J. M. Elsen, F. Eychenne, C. Larzul, E. Laville, F. Meish, D. Milenkovic, J. Tobin, C. Charlier, and M. Georges. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38:813-818. https://doi.org/10.1038/ng1810
- Cui, X., D. Ji, D. A. Fisher, Y. Wu, D. M. Briner, and E. J. Weinstein. 2011. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat. Biotechnol. 29:64-67. https://doi.org/10.1038/nbt.1731
- Doyon, Y., J. M. McCammon, J. C. Miller, F. Faraji, C. Ngo, G. E. Katibah, R. Amora, T. D. Hocking, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, and S. L. Amacher. 2008. Heritable targeted gene disruption in zebrafish using designed zincfinger nucleases. Nat. Biotechnol. 26:702-708. https://doi.org/10.1038/nbt1409
- Flisikowska, T., I. S. Thorey, S. Offner, F. Ros, V. Lifke, B. Zeitler, O. Rottmann, A. Vincent, L. Zhang, S. Jenkins, H. Niersbach, A. J. Kind, P. D. Gregory, A. E. Schnieke, and J. Platzer. 2011. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE. 6:e21045. https://doi.org/10.1371/journal.pone.0021045
- Geurts, A. M., G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, and X. Meng, et al. 2009. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433. https://doi.org/10.1126/science.1172447
- Hauschild, J., B. Petersen, Y. Santiago, A. L. Queisser, J. W. Carnwath, A. Lucas-Hahn, L. Zhang, X. Meng, P. D. Gregory, R. Schwinzer, G. J. Cost, and H. Niemann. 2011. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 108:12013-12017. https://doi.org/10.1073/pnas.1106422108
- Hu, L. Y., C. C. Cui, Y. J. Song, X. G. Wang, Y. P. Jin, A. H. Wang, and Y. Zhang. 2012. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA. Biotechnol. Lett. 34:1251-1255. https://doi.org/10.1007/s10529-012-0912-9
- Kambadur, R., M. Sharma, T. P. L. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-916. https://doi.org/10.1101/gr.7.9.910
- Lai, L., D. Kolber-Simonds, K. W. Park, H. T. Cheong, J. L. Greenstein, G. S. Im, M. Samuel, A. Bonk, A. Rieke, B. N. Day, C. N. Murphy, D. B. Carter, R. J. Hawley, and R. S. Prather. 2002. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092. https://doi.org/10.1126/science.1068228
- Lloyd, A., C. L. Plaisier, D. Carroll, and G. N. Drews. 2005. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA. 102:2232-2237. https://doi.org/10.1073/pnas.0409339102
- McCreath, K. J., J. Howcroft, K. H. S. Campbell, A. Colman, A. E. Schnieke, and A. J. Kind. 2000. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066-1069. https://doi.org/10.1038/35016604
- McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA. 94:12457-12461. https://doi.org/10.1073/pnas.94.23.12457
- Meng, X., M. B. Noyes, L. J. Zhu, N. D. Lawson, and S. A. Wolfe. 2008. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol. 26:695-701. https://doi.org/10.1038/nbt1398
- Meyer, M., M. H. de Angelis, W. Wurst, and R. Kuhn. 2010. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 107:15022-15026. https://doi.org/10.1073/pnas.1009424107
- Mosher, D. S., P. Quignon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh, H. G. Parker, and E. A. Ostrander. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3:e79. https://doi.org/10.1371/journal.pgen.0030079
- Park, S. J., H. J. Park, O. J. Koo, W. J. Choi, J. H. Moon, D. K. Kwon, J. T. Kang, S. Kim, J. Y. Choi, G. Jang, and B. C. Lee. 2012. Oxamflatin improves developmental competence of porcine somatic cell nuclear transfer embryos. Cell. Reprogram. 14:398-406. https://doi.org/10.1089/cell.2012.0007
- Patel, K. and H. Amthor. 2005. The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul. Disord. 15:117-126. https://doi.org/10.1016/j.nmd.2004.10.018
- Richt, J. A., P. Kasinathan, A. N. Hamir, J. Castilla, T. Sathiyaseelan, F. Vargas, J. Sathiyaseelan, H. Wu, H. Matsushita, J. Koster, S. Kato, I. Ishida, C. Soto, J. M. Robl, and Y. Kuroiwa. 2007. Production of cattle lacking prion protein. Nat. Biotechnol. 25:132-138. https://doi.org/10.1038/nbt1271
- Takasu, Y., I. Kobayashi, K. Beumer, K. Uchino, H. Sezutsu, S. Sajwan, D. Carroll, T. Tamura, and M. Zurovec. 2010. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem. Mol. Biol. 40:759-765. https://doi.org/10.1016/j.ibmb.2010.07.012
- Young, J. J., J. M. Cherone, Y. Doyon, I. Ankoudinova, F. M. Faraji, A. H. Lee, C. Ngo, D. Y. Guschin, D. E. Paschon, J. C. Miller, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, R. M. Harland, and B. Zeitler. 2011. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 108:7052-7057. https://doi.org/10.1073/pnas.1102030108
- Yu, S., J. Luo, Z. Song, F. Ding, Y. Dai, and N. Li. 2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res. 21:1638-1640. https://doi.org/10.1038/cr.2011.153
- Zhang, C., L. Wang, G. Ren, Z. Li, C. Ren, T. Zhang, K. Xu, and Z. Zhang. 2014. Targeted disruption of the sheep MSTN gene by engineered zinc-finger nucleases. Mol. Biol. Rep. 41:209-215. https://doi.org/10.1007/s11033-013-2853-3
Cited by
- Human lactoferrin efficiently targeted into caprine beta-lactoglobulin locus with transcription activator-like effector nucleases vol.30, pp.8, 2016, https://doi.org/10.5713/ajas.16.0697
- Naming CRISPR alleles: endonuclease-mediated mutation nomenclature across species vol.28, pp.7-8, 2017, https://doi.org/10.1007/s00335-017-9698-3
- ) vol.29, pp.1, 2018, https://doi.org/10.1080/10495398.2017.1289941
- Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era vol.10, pp.None, 2016, https://doi.org/10.3389/fgene.2019.00750