DOI QR코드

DOI QR Code

Discovery of Gene Sources for Economic Traits in Hanwoo by Whole-genome Resequencing

  • Received : 2015.09.10
  • Accepted : 2016.02.16
  • Published : 2016.09.01

Abstract

Hanwoo, a Korean native cattle (Bos taurus coreana), has great economic value due to high meat quality. Also, the breed has genetic variations that are associated with production traits such as health, disease resistance, reproduction, growth as well as carcass quality. In this study, next generation sequencing technologies and the availability of an appropriate reference genome were applied to discover a large amount of single nucleotide polymorphisms (SNPs) in ten Hanwoo bulls. Analysis of whole-genome resequencing generated a total of 26.5 Gb data, of which 594,716,859 and 592,990,750 reads covered 98.73% and 93.79% of the bovine reference genomes of UMD 3.1 and Btau 4.6.1, respectively. In total, 2,473,884 and 2,402,997 putative SNPs were discovered, of which 1,095,922 (44.3%) and 982,674 (40.9%) novel SNPs were discovered against UMD3.1 and Btau 4.6.1, respectively. Among the SNPs, the 46,301 (UMD 3.1) and 28,613 SNPs (Btau 4.6.1) that were identified as Hanwoo-specific SNPs were included in the functional genes that may be involved in the mechanisms of milk production, tenderness, juiciness, marbling of Hanwoo beef and yellow hair. Most of the Hanwoo-specific SNPs were identified in the promoter region, suggesting that the SNPs influence differential expression of the regulated genes relative to the relevant traits. In particular, the non-synonymous (ns) SNPs found in CORIN, which is a negative regulator of Agouti, might be a causal variant to determine yellow hair of Hanwoo. Our results will provide abundant genetic sources of variation to characterize Hanwoo genetics and for subsequent breeding.

Keywords

References

  1. Bagnato, A., F. Schiavini, A. Rossoni, C. Maltecca, M. Dolezal, I. Medugorac, J. Solkner, V. Russo, L. Fontanesi, and A. Friedmann, et al. 2008. Quantitative trait loci affecting milk yield and protein percentage in a three-country Brown Swiss population. J. Dairy Sci. 91:767-783. https://doi.org/10.3168/jds.2007-0507
  2. Berlanga, J. J., J. P. Garcia-Ruiz, M. Perrot-Applanat, P. A. Kelly, and M. Edery. 1997. The short form of the prolactin (PRL) receptor silences PRL induction of the beta-casein gene promoter. Mol. Endocrinol. 11:1449-1457.
  3. Cafe, L. M., B. L. McIntyre, D. L. Robinson, G. H. Geesink, W. Barendse, D. W. Pethick, J. M. Thompson, and P. L. Greenwood. 2010. Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 2. Objective meat quality. J. Anim. Sci. 88:3059-3069. https://doi.org/10.2527/jas.2009-2679
  4. Canovas, A., R. Quintanilla, M. Amills, and R. N. Pena, 2010. Muscle transcriptomic profiles in pigs with divergent phenotypes for fatness traits. BMC Genomics 11:372. https://doi.org/10.1186/1471-2164-11-372
  5. Carnagey, K. M., E. J. Huff-Lonergan, S. M. Lonergan, A. Trenkle, R. L. Horst, and D. C. Beitz. 2008. Use of 25-hydroxyvitamin D3 and dietary calcium to improve tenderness of beef from the round of beef cows. J. Anim. Sci. 86:1637-1648. https://doi.org/10.2527/jas.2007-0406
  6. Chanchai, W., S. Chanpongsang, and N. Chaiyabutr. 2010. Effects of misty-fan cooling and supplemental rbST on rumen function and milk production of crossbred Holstein cattle during early, mid and late lactation in a tropical environment. Anim. Sci. J. 81:230-239. https://doi.org/10.1111/j.1740-0929.2009.00726.x
  7. Chen, N., W. Fang, J. Zhan, S. Hong, Y. Tang, S. Kang, Y. Zhang, X. He, T. Zhou, T. Qin, Y. Huang, X. Yi, and L. Zhang. 2015. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: Implication for optional immune targeted theraphy for NSCLC patients with EGFR mutation. J. Thorac. Oncol. 10:910-923. https://doi.org/10.1097/JTO.0000000000000500
  8. Decker, J. E., J. C. Pires, G. C. Conant, S. D. McKay, M. P. Heaton, K. Chen, A. Cooper, J. Vilkki, C. M. Seabury, and A. R. Caetano, et al. 2009. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proc. Natl. Acad. Sci. USA. 106:18644-18649. https://doi.org/10.1073/pnas.0904691106
  9. Elsik, C. G., R. L. Tellam, and K. C. Worley, 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522-528. https://doi.org/10.1126/science.1169588
  10. Groenen, M. A. M., A. L. Archibald, H. Uenishi, C. K. Tuggle, Y. Takeuchi, M. F. Rothschild, C. Rogel-Gaillard C. Park, D. Milan, and H. J. Megens, et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393-398. https://doi.org/10.1038/nature11622
  11. Koks, S., E. Reimann, R. Lilleoja, F. Lattekivi, A. Salumets, P. Reemann, and U. Jaakma. 2014. Sequencing and annotated analysis of full genome of Holstein breed bull. Mamm. Genome 25:363-373. https://doi.org/10.1007/s00335-014-9511-5
  12. Kawahara-Miki, R., K. Tsuda, Y. Shiwa, Y. Arai-Kichise, T. Matsumoto, Y. Kanesaki, S. I. Oda, S. Ebihara, S. Yajima, and H. Yoshikawa, et al. 2011. Whole-genome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle Kuchinoshima-Ushi. BMC Genomics 12:103. https://doi.org/10.1186/1471-2164-12-103
  13. Khatib, H., R. L. Monson, V. Schutzkus, D. M. Kohl, G. J. M. Rosa, and J. J. Rutledge. 2008. Mutations in the STAT5A gene are associated with embryonic survival and milk composition in cattle. J. Dairy Sci. 91:784-793. https://doi.org/10.3168/jds.2007-0669
  14. Kijas, J. W., D. Townley, B. P. Dalrymple, M. P. Heaton, J. F. Maddox, A. McGrath, P. Wilson, R. G. Ingersoll, R. McCulloch, and S. McWilliam, et al. 2009. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PloS ONE 4:e4668. https://doi.org/10.1371/journal.pone.0004668
  15. Kim, H., S. K. Lee, M. W. Hong, S. R. Park, Y. S. Lee, J. W. Kim, H. K. Lee, D. K. Jeong Y. H. Song, and S. J. Lee. 2013. Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle. Anim. Genet. 44:750-753. https://doi.org/10.1111/age.12055
  16. Kim, J. I., Y. S. Ju, H. Park, S. Kim, S. Lee, J. H. Yi, J. Mudge, N. A. Miller, D. Hong, and C. J. Bell, et al. 2009. A highly annotated whole-genome sequence of a Korean individual. Nature 460:1011-1015. https://doi.org/10.1038/nature08211
  17. Lee, K. T., W. H. Chung, S. Y. Lee, J. W. Choi, J. Kim, D. Lim, S. Lee, G. W. Jang, B. Kim, and Y. H. Choy, et al. 2013. Wholegenome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics 14:519. https://doi.org/10.1186/1471-2164-14-519
  18. Lee, S. H., Y. M. Cho, S. H. Lee, B. S. Kim, N. K. Kim, Y. H. Choy, K. H. Kim, D. Yoon, S. K. Im, S. J. Oh, and E. W. Park. 2008. Identification of marbling-related candidate genes in M. longissimus dorsi of high- and low marbled Hanwoo (Korean native cattle) steers. BMB Reports 41:846-851. https://doi.org/10.5483/BMBRep.2008.41.12.846
  19. Lee, S. H., C. Gondro, J. van der Werf, N. K. Kim, D. J. Lim, E. W. Park, S. J. Oh, J. P. Gibson, and J. M. Thompson. 2010. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle). BMC Genomics 11:623. https://doi.org/10.1186/1471-2164-11-623
  20. Lim, D., N. K. Kim, H. S. Park, S. H. Lee, Y. M. Cho, S. J. Oh, T. H. Kim, and H. Kim, 2011. Identification of candidate genes related to bovine marbling using protein-protein interaction networks. Int. J. Biol. Sci. 7:992-1002. https://doi.org/10.7150/ijbs.7.992
  21. McCue, M. E., D. L. Bannasch, J. L. Petersen, J. Gurr, E. Bailey, M. M. Binns, O. Distl, G. Guerin, T. Hasegawa, and E. W. Hill, et al. 2012. A high density SNP array for the domestic horse and extant Perissodactyla: Utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genet. 8:e1002451. https://doi.org/10.1371/journal.pgen.1002451
  22. Novembre, J. and S. Ramachandran. 2011. Perspectives on human population structure at the cusp of the sequencing era. Annu. Rev. Genomics Hum. Genet. 12:245-274. https://doi.org/10.1146/annurev-genom-090810-183123
  23. Nusse, R. and H. Varmus. 2012. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 31:2670-2684. https://doi.org/10.1038/emboj.2012.146
  24. Paredi, G., S. Raboni, E. Bendixen, A. M. de Almeida, and A. Mozzarelli, 2012. "Muscle to meat" molecular events and technological transformations: The proteomics insight. J. Proteomics 75:4275-4289. https://doi.org/10.1016/j.jprot.2012.04.011
  25. Pinto, L. F., J. B. Ferraz, V. B. Pedrosa, J. P. Eler, F. V. Meirelles, M. N. Bonin, F. M. Rezende, M. E. Carvalho, D. C. Cucco, and R. C. Silva. 2011. Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Genet. Mol. Res. 10:2057-2064. https://doi.org/10.4238/vol10-3gmr1263
  26. Ron, M., G. Israeli, E. Seroussi, J. I. Weller, J. P. Gregg, M. Shani, and J. F. Medrano. 2007. Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle. BMC Genomics 8:183. https://doi.org/10.1186/1471-2164-8-183
  27. Shibata, M., K. Matsumoto, K. Aikawa, T. Muramoto, S. Fujimura, and M. Kadowaki. 2006. Gene expression of myostatin during development and regeneration of skeletal muscle in Japanese Black Cattle. J. Anim. Sci. 84:2983-2989. https://doi.org/10.2527/jas.2006-118
  28. Van den Bossche, J., B. Malissen, A. Mantovani, P. De Baetselier, and J. A. Van Ginderachter. 2012. Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood 119:1623-1633. https://doi.org/10.1182/blood-2011-10-384289
  29. Vonholdt, B. M., J. P. Pollinger, K. E. Lohmueller, E. Han, H. G. Parker, P. Quignon, J. D. Degenhardt, A. R. Boyko, D. A. Earl, and A. Auton, et al. 2010. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:898-902. https://doi.org/10.1038/nature08837
  30. Watanabe, N., Y. Satoh, T. Fujita, T. Ohta, H. Kose, Y. Muramatsu, T. Yamamoto, and T. Yamada. 2011. Distribution of allele frequencies at TTN g. 231054C> T, RPL27A g. 3109537C> T and AKIRIN2 c.* 188G> A between Japanese Black and four other cattle breeds with differing historical selection for marbling. BMC Res. Notes 4:10. https://doi.org/10.1186/1756-0500-4-10
  31. Zimin, A. V., A. L. Delcher, L. Florea, D. R. Kelley, M. C. Schatz, D. Puiu, F. Hanrahan, G. Pertea, C. P. Van Tassell, and T. S. Sonstegard, et al. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10:R42. https://doi.org/10.1186/gb-2009-10-4-r42

Cited by

  1. ) vol.64, pp.6, 2018, https://doi.org/10.1080/19396368.2018.1444816
  2. Genome-wide identification of RNA editing in seven porcine tissues by matched DNA and RNA high-throughput sequencing vol.10, pp.1, 2019, https://doi.org/10.1186/s40104-019-0326-9