DOI QR코드

DOI QR Code

Ramie Leaf Extracts Suppresses Adipogenic Differentiation in 3T3-L1 Cells and Pig Preadipocytes

  • Lee, Joomin (Department of Food and Nutrition, College of Natural Science, Chosun University) ;
  • Kim, Ah-Ra (Department of Food and Nutrition, College of Natural Science, Chosun University) ;
  • Lee, Jae-Joon (Department of Food and Nutrition, College of Natural Science, Chosun University)
  • Received : 2015.05.01
  • Accepted : 2015.12.15
  • Published : 2016.09.01

Abstract

The present study was carried out to evaluate the anti-obesity effect of different concentrations of extracts of hot air-dried ramie leaf (HR) and freeze-dried ramie leaf (FR) in 3T3-L1 cells and pig preadipocytes. To analyze the effect on cell proliferation, cells were treated with $25{\mu}g/mL$ or $100{\mu}g/mL$ HR or FR extract for 2 days. Cell differentiation was evaluated by measuring glycerol-3-phosphate dehydrogenase and lipoprotein lipase (LPL) activities and intracellular triglyceride content. Treatment with either HR or FR extracts inhibited the proliferation of 3T3-L1 cells and pig preadipocytes in a dose-dependent manner. HR extract treatment inhibited the differentiation of both cell types more effectively than FR treatment. The extent of triglyceride accumulation decreased significantly in both cells following either HR or FR treatment. Furthermore, LPL activity significantly decreased after treatment with HR or FR extract. These results indicated that HR and FR extracts may inhibit proliferation and differentiation of 3T3-L1 cells and pig preadipocytes. Further studies are needed to explore the anti-obesity effect of HR and FR extracts.

Keywords

References

  1. Boeing, H., A. Bechthold, A. Bub, S. Ellinger, D. Haller, A. Kroke, E. Leschik-Bonnet, M. J. Muller, H. Oberritter, M. Schulze, P. Stehle, and B. Watzl. 2012. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 51:637-663. https://doi.org/10.1007/s00394-012-0380-y
  2. Cao, Y. 2007. Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 117:2362-2368. https://doi.org/10.1172/JCI32239
  3. Chen, C., A. E. Brodie, and C. Y. Hu. 1997. CCAAT/enhancer-binding protein beta is not affected by tetrachlorodibenzo-p-dioxin (TCDD) inhibition of 3T3-L1 preadipocyte differentiation. Obes. Res. 5:146-152. https://doi.org/10.1002/j.1550-8528.1997.tb00655.x
  4. De Ferranti, S. and D. Mozaffarian. 2008. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin. Chem. 54:945-955. https://doi.org/10.1373/clinchem.2007.100156
  5. Fernyhough, M. E., E. Okine, G. Hausman, J. L. Vierck, and M. V. Dodson. 2007. PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest. Anim. Endocrinol. 33:367-378. https://doi.org/10.1016/j.domaniend.2007.05.001
  6. Ferreira, J. F. S. and D. L. Luthria. 2010. Drying affects artemisinin, dihydroartemisinic acid, artemisinic acid, and the antioxidant capacity of Artemisia annua L. leaves. J. Agric. Food Chem. 58:1691-1698. https://doi.org/10.1021/jf903222j
  7. Feve, B. 2005. Adipogenesis: cellular and molecular aspects. Best Pract. Res. Clin. Endocrinol. Metab. 19:483-499. https://doi.org/10.1016/j.beem.2005.07.007
  8. Furukawa, S., T. Fujita, M. Shimabukuro, M. Iwaki, Y. Yamada, Y. Nakajima, O. Nakayama, M. Makishima, M. Matsuda, and I. Shimomura. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114:1752-1761. https://doi.org/10.1172/JCI21625
  9. Green, H. and O. Kehinde. 1975. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5:19-27. https://doi.org/10.1016/0092-8674(75)90087-2
  10. Gonzalez-Castejon, M. and A. Rodriguez-Casado. 2011. Dietary phytochemicals and their potential effects on obesity: A review. Pharmacol. Res. 64:438-455. https://doi.org/10.1016/j.phrs.2011.07.004
  11. Gumusay, O. A., A. A. Borazan, N. Ercal, and O, Demirkol. 2015. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 173:156-162. https://doi.org/10.1016/j.foodchem.2014.09.162
  12. Houpt, K. A., T. R. Houpt, and W. G. Pond. 1979. The pig as a model for the study of obesity and of control of food intake: A review. Yale J. Biol. Med. 52:307-329.
  13. Kim, A. R., H. J. Lee., H. O. Jung, and J. J. Lee. 2014a. Physicochemical composition of ramie leaf according to drying methods. Prev. Nutr. Food Sci. 43:118-127.
  14. Kim, A. R., S. T. Kang, E. Jeong, and J. J. Lee. 2014b. Effects of ramie leaf according to drying methods on antioxidant activity and growth inhibitory effects of cancer cells. Prev. Nutr. Food Sci. 43:682-689.
  15. Kim, S. and N. Moustaid-Moussa. 2000. Secretory, endocrine and autocrine/paracrine function of the adipocyte. J. Nutr. 130:3110S-3115S. https://doi.org/10.1093/jn/130.12.3110S
  16. Kim, S. H., H. S. Choi, M. S. Lee, and M. S. Chung. 2007. Volatile compounds and antioxidant activities of Adenophore remotiflora. Korean J. Food Sci. Technol. 39:109-113.
  17. Lee, Y. R., J. W. Noh, I. G. Hwang, W. J. Kim, Y. J. Lee, and H. S. Jeong. 2009. Chemical composition and antioxidant activity of ramie leaf (Boehmeria nivea L.). Food Sci. Biotechnol. 18:1096-1099.
  18. Litten-Brown, J. C., A. M. Corson, and L. Clarke. 2010. Porcine models for the metabolic syndrome, digestive and bone disorders: A general overview. Animal 4:899-920. https://doi.org/10.1017/S1751731110000200
  19. Nilsson-Ehle, P. and M. C. Schotz. 1976. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J. Lipid Res. 17:536-541.
  20. Ong, K. W., A. Hsu, and B. K. H. Tan. 2013. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by AMPK activation. Biochem. Pharmacol. 85:1341-1351. https://doi.org/10.1016/j.bcp.2013.02.008
  21. Ratti, C. 2001. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 49:311-319. https://doi.org/10.1016/S0260-8774(00)00228-4
  22. Semenkovich, C. F., M. Wims, L. Noe, J. Etienne, and L. Chan. 1989. Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels. J. Biol. Chem. 264:9030-9038.
  23. Spurlock, M. E. and N. K. Gabler. 2008. The development of porcine models of obesity and the metabolic syndrome. J. Nutr. 138:397-402. https://doi.org/10.1093/jn/138.2.397
  24. Suryawan, A., L. V. Swanson, and C. Y. Hu. 1997. Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. J. Anim. Sci. 75:105-111. https://doi.org/10.2527/1997.751105x
  25. Vincent, H. K. and A. G. Taylor. 2006. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int. J. Obes. 30:400-418. https://doi.org/10.1038/sj.ijo.0803177
  26. Wang, H. and R. H. Eckel. 2009. Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab. 297:E271-E288. https://doi.org/10.1152/ajpendo.90920.2008
  27. Wei, J., L. Lin, X. Su, S. Qin, Q. Xu, Z. Tang, Y. Deng, Y. Zhou, and S. He. 2014. Anti-hepatitis B virus activity of Boehmeria nivea leaf extracts in human HepG2.2.15 cells. Biomed. Rep. 2:147-151. https://doi.org/10.3892/br.2013.205
  28. Wise, L. S. and H. Green. 1979. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in adipose conversion of 3T3 cell. J. Biol. Chem. 254:273-275.
  29. Xu, Q. M., Y. L. Liu, X. R. Li, X. Li, and S. L. Yang. 2011. Three new fatty acids from the roots of Boehmeria nivea (L.) Gaudich and their antifungal activities. Nat. Prod. Res. 25:640-647. https://doi.org/10.1080/14786419.2010.488230
  30. Yu, B. P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74:139-162. https://doi.org/10.1152/physrev.1994.74.1.139
  31. Yun, J. W. 2010. Possible anti-obesity therapeutics from nature--A review. Phytochemistry 71:1625-1641. https://doi.org/10.1016/j.phytochem.2010.07.011

Cited by

  1. Effects of Loquat(Eriobotrya japonica Lindl.) Extracts in Different Aerial Components on Differentiation of 3T3-L1 Cells and Pig Preadipocytes vol.27, pp.4, 2016, https://doi.org/10.7856/kjcls.2016.27.4.863
  2. Roles of Hedgehog signaling pathway in adipogenic differentiation potential of porcine adipose-derived mesenchymal stem cells vol.47, pp.0, 2018, https://doi.org/10.1590/rbz4720170019
  3. (L.) Gaudich vol.18, pp.3, 2018, https://doi.org/10.1111/1755-0998.12766
  4. Genome-wide association study discovered favorable single nucleotide polymorphisms and candidate genes associated with ramet number in ramie ( Boehmeria nivea L.) vol.18, pp.None, 2016, https://doi.org/10.1186/s12870-018-1573-1
  5. Comparative Study of Phenolic Profiles, Antioxidant and Antiproliferative Activities in Different Vegetative Parts of Ramie ( Boehmeria nivea L.) vol.24, pp.8, 2016, https://doi.org/10.3390/molecules24081551
  6. Therapeutic Efficacy of Nyctanthes arbor-tristis Flowers to Inhibit Proliferation of Acute and Chronic Primary Human Leukemia Cells, with Adipocyte Differentiation and in Silico Analysis of Interact vol.10, pp.2, 2016, https://doi.org/10.3390/biom10020165
  7. Extract of Boehmeria nivea Suppresses Mast Cell-Mediated Allergic Inflammation by Inhibiting Mitogen-Activated Protein Kinase and Nuclear Factor-κB vol.25, pp.18, 2020, https://doi.org/10.3390/molecules25184178
  8. The Antioxidant, Anti-Diabetic, and Anti-Adipogenesis Potential and Probiotic Properties of Lactic Acid Bacteria Isolated from Human and Fermented Foods vol.7, pp.3, 2016, https://doi.org/10.3390/fermentation7030123