References
- Barry, T. N., A. Thompson, and D. G. Armstrong. 1977. Rumen fermentation studies on two contrasting diets. 1. Some characteristics of the in vivo fermentation, with special reference to the composition of the gas phase, oxidation/reduction state and volatile fatty acid proportions. J. Agric. Sci. Camb. 89:183-195. https://doi.org/10.1017/S0021859600027362
- Carroll, E. J. and R. E. Hungate. 1955. Formate dissimilation and methane production in bovine rumen contents. Arch. Biochem. 56:525-536. https://doi.org/10.1016/0003-9861(55)90272-1
- Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
- Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322. https://doi.org/10.1111/j.1574-6941.2007.00394.x
- Dubois, B., N. W. Tomkins, R. D. Kinley, M. Bai, S. Seymour, N. A. Paul, and R. de Nys. 2013. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am. J. Plant Sci. 4:34-43. https://doi.org/10.4236/ajps.2013.412A2005
- Durmic, Z., P. J. Moate, R. Eckard, D. K. Revell, R. Williams, and P. E. Vercoe. 2014. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 94:1191-1196. https://doi.org/10.1002/jsfa.6396
- Ellis, J. L., E. Kebreab, N. E. Odongo, B. W. McBride, E. K. Okine, and J. France. 2007. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90:3456-3467. https://doi.org/10.3168/jds.2006-675
- Eom, T. H., J. H. Kim, S. I. Lee, and J. G. Jeong. 2013. A herbalogical study on the plants of Iridaceae in Korea. Kor. J. Herbol. 28:85-93. https://doi.org/10.6116/kjh.2013.28.3.85
- FAO. 2006. Livestock's long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, Italy.
- Hillman, K., D. Lloyd, and A. G. Williams. 1985. Use of a portable quadrupole mass spectrometer for the measurement of dissolved gas concentrations in ovine rumen liquor in situ. Curr. Microbiol. 12:335-339. https://doi.org/10.1007/BF01567893
- Hristov, A., M. Ivan, L. Neill, and T. McAllister. 2003. Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Anim. Feed Sci. Technol. 105:163-184. https://doi.org/10.1016/S0377-8401(03)00060-9
- Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Arch. Mikrobiol. 59:158-164. https://doi.org/10.1007/BF00406327
- Janssen, P. H. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160:1-22. https://doi.org/10.1016/j.anifeedsci.2010.07.002
- Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492. https://doi.org/10.2527/1995.7382483x
- Kim, J. J., H. J. Lee, and S. T. Yee. 2012. Effect of Pueraria thunbergiana extracts on the activation of immune cells. J. Life Sci. 22:1107-1113. https://doi.org/10.5352/JLS.2012.22.8.1107
- Kim, S. J. and G. H. Kim. 2003. Identification for flavones in different parts of Cirsium japonicum. Prev. Nutr. Food Sci. 8:330-335. https://doi.org/10.3746/jfn.2003.8.4.330
- Knapp, J. R., G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico. 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97:3231-3261. https://doi.org/10.3168/jds.2013-7234
- Koike, S. and Y. Kobayashi. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Ecol. 204:361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
- Latham, M. J. and M. J. Wolin. 1977. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol. 34:297-301.
- Lee, H. H., S. Y. Kim, Y. M. Ko, J. S. Kim, and S. Y. Lee. 2009. Total polyphenol and flavonoid content and antioxidant activity on ethanol extracts of Arisaema amurense var. serratum Nakai. Tuber. In: Proceedings of the 2009 Spring Symposium of the Plant Resources Society of Korea. 179 p.
- Makkar, H. P. S., M. Blummel, and K. Becker. 1995. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J. Sci. Food Agric. 69:481-493. https://doi.org/10.1002/jsfa.2740690413
- McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109. https://doi.org/10.1042/bj0430099
- Minato, H. and T. Suto. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 24:1-16. https://doi.org/10.2323/jgam.24.1
- Mitsumori, M. and W. Sun. 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian Australas. J. Anim. Sci. 21:144-154. https://doi.org/10.5713/ajas.2008.r01
- Ntaikou, I., H. N. Gavala, M. Kornaros, and G. Lyberatos. 2008. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int. J. Hydrogen. Energy 33:1153-1163. https://doi.org/10.1016/j.ijhydene.2007.10.053
- Oskoueian, E., N. Abdullah, and A. Oskoueian. 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Res. Int. Article ID 349129.
- Patra, A. K. and J. Saxena. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71:1198-1222. https://doi.org/10.1016/j.phytochem.2010.05.010
- Patra, A. K. and Z. Yu. 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 78:4270-4280.
- SAS Institute. 1996. SAS User Guide. Release 6.12 edition, SAS Inst. Inc. Cary, NC, USA.
- Skillman, L. C., A. F. Toovey, A. J. Williams, and A. D. Wright. 2006. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between Entodinium populations in sheep offered a hay-based diet. Appl. Environ. Microbiol. 72:200-206. https://doi.org/10.1128/AEM.72.1.200-206.2006
- Tan, H. Y., C. C. Sieo, N. Abdullah, J. B. Liang, X. D. Huang, and Y. W. Ho. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169:185-193. https://doi.org/10.1016/j.anifeedsci.2011.07.004
- Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
- Vogels, G. D., W. F. Hoppe, and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608-612.
Cited by
- Effect of feeding of blend of essential oils on methane production, growth, and nutrient utilization in growing buffaloes vol.31, pp.5, 2018, https://doi.org/10.5713/ajas.16.0508
- A comprehensive review of research progress on the genus Arisaema: Botany, uses, phytochemistry, pharmacology, toxicity and pharmacokinetics vol.285, pp.None, 2016, https://doi.org/10.1016/j.jep.2021.114798