DOI QR코드

DOI QR Code

Screening of Antifungal Activity on the Coastal Plants 5 Species

해안식물 5종에 대한 항균활성 탐색

  • 권난희 (제주대학교 농학과) ;
  • 김태근 (제주대학교 농학과) ;
  • 박성준 (제주특별자치도의회) ;
  • 김현철 (제주특별자치도 세계유산.한라산 연구원) ;
  • 송창길 (제주대학교 식물자원환경전공)
  • Received : 2016.04.14
  • Accepted : 2016.07.26
  • Published : 2016.08.31

Abstract

This study evaluated the antifungal activity of varying concentrations of water-soluble extracts from native plants (Vitex rotundifolia, Tetragonia tetragonoides, Artemisia capillaris, Hibiscus hamabo and Ficus carica) against Stemphylium vesicarium, Penicillium italicum, Sclerotinia sclerotiorum, Pythium ultimum, Botrytis cinerea, Rhizoctonia solani and Colletotrichum gloeosporioides. Mycelium growth of pathogenic bacteria generally decreased in a concentration-dependent manner following treatment with the water extracts from donor plants. Closer analyses indicate varying inhibitory capacities depending on the type of donor plant and pathogenic bacteria. Specifically, mycelium growth of S. vesicarium varied depending on the concentration of the water extracts from T. tetragonoides (r = -0.857, p<0.01) and A. capillarys (r = -0.868, p<0.01). Also, P. italicum and V. rotundifolia (r = -0.833, p<0.01), S. sclerotiorum and V. rotundifolia (r = -0.862, p<0.01), A. capillaris (r = -0.902, p<0.01), B. cinerea and T. tetragonoides (r = -0.896, p<0.01) showed an inverse relationship. The rate of mycelial growth inhibition of pathogenic bacteria analysed are as follows: P. ultimum 94%, B. cinerea 50%, C. gloeosporioides 80% in 100% treatment of T. teragonoides. A. capillaris inhibited S. vesicarium by 43%, P. ultimum by 90%; H. hamabo inhibited P. italicum by 50%, S. sclerotiorum by 26%, and F. carica inhibited R. solani by 74%. Total phenol content with antifungal activities are as follows: A. capillaris 16.15 mg/g, F. carica 7.81 mg/g, V. rotundifolia 6.18 mg/g, H. hamabo 5.25 mg/g, T. tetragonoides 4.41 mg/g, and total flavonoid content is as follows: A. capillaris 27.57 mg/g, V. rotundifolia 12.49 mg/g, F. carica 11.45 mg/g, H. hamabo 5.77 mg/g, T. tetragonoides 5.08 mg/g.

본 연구는 자생식물인 순비기나무, 번행초, 사철쑥 등을 이용하여 친환경 농자재로 개발하기 위한 기초자료를 제공하고자 수용성 추출액 농도에 따른 Stemphylium vesicarium, Penicillium italicum, Sclerotinia sclerotiorum, Pythium ultimum, Botrytis cinerea, Rhizoctonia solani, Colletotrichum gloeosporioides 7종의 작물 병원균에 대해 생장을 조사하였다. 공여체식물별에 따른 수용성 추출액 농도가 증가됨에 따라 작물 병원균 균사의 생장이 감소하는 경항을 보이나 공여체식물과 병원균의 종류에 따라 억제의 정도차이를 보였다. Stemphylium vesicarium 경우 번행초와 사철쑥에서 농도 증가에 따라 각각 r = -0.857 (p<0.01), r = -0.868 (p<0.01)로 역의 상관을 보였고 Penicillium italicum은 순비기나무 r = -0.833 (p<0.01), Sclerotinia sclerotiorum은 순비기나무 r = -0.862 (p<0.01)와 사철쑥 r = -0.902 (p<0.01), Botrytis cinerea은 번행초 r = -0.896 (p<0.01)에서 역의 상관을 보였으며 Rhizoctonia solani과 Colletotrichum gloeosporioides은 모든 공여체식물에서 역의 상관을 보였다. 100% 처리구에서 균사의 생장억제 활성은 번행초인 경우 Pythium ultimum, Botrytis cinerea, Colletotrichum gloeosporioides에 대해 각각 94%, 50%, 80%의 억제율을 보였다. 사철쑥인 경우 Stemphylium vesicarium, Pythium ultimum에 대해 각각 43%, 90%의 억제율을 보였다. 황근은 Penicillium italicum, Sclerotinia sclerotiorum에서 각각 50%, 26%가 억제되었으며 무화과는 Rhizoctonia solani에 대해 74%가 균사 생장이 억제되었다. 항균활성을 보이는 수용체식물의 총 페놀 및 플라보노이드 함량은 사철쑥 16.15 mg/g, 무화과 7.81 mg/g, 순비기나무 6.18 mg/g, 황근 5.25 mg/g, 번행초 4.41 mg/g 순으로 조사되었고 플라보노이드는 사철쑥 27.57 mg/g, 순비기나무 12.49 mg/g, 무화과 11.45 mg/g, 황근 5.77 mg/g, 번행초 5.08 mg/g 순으로 분석되었다.

Keywords

References

  1. Abawi, G. S. and R. G. Grogan. 1975. Source of primary inoculum and effects of temperature and moisture on infection of beans by Whetzelinia sclerotiorum. Phytopathology 65: 300-309. https://doi.org/10.1094/Phyto-65-300
  2. Agrios, G. N. 1988. Principle of plant Pathology (3rd ed). Academic Press INC. New Your. p. 803.
  3. Bardin, S. D. and H. C. Huang. 2001. Research on biology and control of Sclerotinia diseases in Canada. Can. J. Plant Pathol. 23: 88.98. https://doi.org/10.1080/07060660109506914
  4. Bassman, J. H. 2004. Ecosystem consequences of enhanced solar ultraviolet radiation; Sencondary plant metabolites as mediators of multiple tropic interactions in terrestrial plant communities. Photochem, Photociol. 79: 382-398. https://doi.org/10.1562/SI-03-24.1
  5. Benner, J. P. 1993. Pesticidal compounds from higher plants. Pestic. Sci. 39: 95-102. https://doi.org/10.1002/ps.2780390202
  6. Brown, G. E. and J. W. Eckert. 2000. Penicillium Decays. Compendium of citrus diseases, 2nd edn. APS, St Paul, MN, USA, 41-42.
  7. Chang, S. W. and S. K. Kim. 2003. First report of Sclerotinia rot caused by Sclerotinia sclerotiorum on some vegetable crops in Korea. Plant Pathology J. 19: 79-84. https://doi.org/10.5423/PPJ.2003.19.2.079
  8. Cho, W. H. 1997. Problems and Measures of Organic Agriculture in Korea under CODEX Guidelines on Organic Foods. Korea Journal of Organic Agriculture. 6(1): 25-33.
  9. Cho. J. I., J. Y. Cho, and S. Y. Yang. 2005. Effects of Antagonistic Rhizobacteria on the Biological Control of Gray Mold in Greenhouse Grown Strawberry Plants. Korea Journal of Organic Agriculture. 13(2): 161-173.
  10. Choi, S. R., D. H. You, J. Y. Kim, C. B. Park, J. Ryu, D. H. Kim, and J. S. Eun. 2008. Antioxidant and antimicrobial activities of Artemisia capillaris Thunbergii. Kor. J. Med. Crop Sci. 16: 112-117 (in Korean).
  11. Chon, S. U., D. I. Kim and Y. S. Choi. 2003. Assessments on insecticidal and fungicidal activities by aerial part extracts from several Compositae plants. Kor. J. Weed Sci. 23(2): 81-91. (In Korean)
  12. Clark, A. M., F. S. EI-Feraly, and W. S. Li. 1981. Antimicrobial activity of phenolic constituent of Mangolina grandiflora L. J. Pharm. Sci., 70: 951-952 https://doi.org/10.1002/jps.2600700833
  13. Delp, C. J. 1988. Fungicide resistance in North America. The American Phytopathological Society, St. Paul, Minn., p133.
  14. Graham, H. D. 1992. Modified prussian blue assay for total phenol compound. J. Agric. Food Chem. 40: 801-807. https://doi.org/10.1021/jf00017a018
  15. Guillem, S., C. Eva, B. Celia, A. Mannuel, and T. Isabel. 2007. The suppressive effects of composts used as growth media against Botrytis cinerea in cucumber plants. J. Eur. Plant Pathol. 117: 393-402. https://doi.org/10.1007/s10658-007-9108-x
  16. Hammerschmidt, R. 1999. Phtoalexins: What have we learned after 60 years? Ann. Rev. Phtopahol. 37: 285-306. https://doi.org/10.1146/annurev.phyto.37.1.285
  17. Holmes, G. J., J. W. Eclert, and J. I. Pitt. 1994. Revised description of Penicillium ulaiense and its role as a pathogen of citrus fruits. Phytopathology. 84: 719-727. https://doi.org/10.1094/Phyto-84-719
  18. Hwang, J. Y., C. K. Shim, K. Y. Ryu, D. H. Choi, and H. J. Jee. 2006. Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as biological control agents against sclerotinia rot of lettuce. Res. Plant Dis. 12: 254-259. (In Korean) https://doi.org/10.5423/RPD.2006.12.3.254
  19. Hyun, J. W., D. H. Kim, H. M. Kwon, and H. Y. Kim. 1998. Relation between pesticide resistance and genetic analysis based on RAPD of in spieces and between spieces of penicillum spp. sperated from rotten citrus. In Proceeding of International Symposium on Recent Technology of Chemical Control of Plant Diseases. The Korean Society of Plant Pathology, Korea. pp. 196-197.
  20. Jeong, J. A., S. H. Kwon, Y. J. Kim, C. S. Shin, and C. H. Lee. 2007. Investigation of antioxidative and tyrosinase inhibitory activities of the seed extracts. Korean Journal of Plant Resources. 20: 177-184. (In Korean).
  21. Kang, J. Y., D. H. Kim, D. G. Lee, I. S. Kim, M. G. Jeon, J. D. Lee, I. H. Kim, and S. H. Lee. 2013. Screening of Antifungal Activities of Medicinal Plants for the Control of Turfgrass Fungal Disease. Weed Turf. Sci. 2(1): 70-75. (in Korean). https://doi.org/10.5660/WTS.2013.2.1.070
  22. Kawabata, J., Y. Fukushi, R. Hayashi, K. Suzuki, Y. Mishima, A. Yamane, and J. Mizutani. 1989. 8-methylsylfinyloctyl isothiocyanate as allelochemical.
  23. Kim, B. S., T. H. Lim, E. W. Park, and K. Y. Cho. 1995. Occurrence of multiple resistant isolate of Botrytis cinerea to benzimidazole and N-phenylcarbamate fungicide. Korean J. Plant Pathol. 11: 146-150.
  24. Kim, C. S. 2006. Outline of plants of hallasan natural reserve. report of survey and spud of hallasan natural reserve 2006. pp. 109-137. (in Korean).
  25. Kim, H. W., K. Y. Lee, J. W. Baek, H. J. Kim, J. Y. Park, J. W. Lee, S. J. Jung, and B. J. Moon. 2004. Isolationj and identification of antagonistic bacterium active against Sclerotinia sclerotiorum causing sclerotinia rot on crisphead lettuce. Res. Plant Dis. 12: 254-259. (In Korean)
  26. Kim, J. B. 2005. Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants. L. korean Soc. Appl. Biol. Chem. 48(1): 1-15.
  27. Kim, J. W. 1998. Pythium species associated with turfgrass leaf blight at golf courses in Korea : their identification, disease occurrence, pathogenicity, and resistance to metalaxyl. PhD Diss. Seoul National University. Seoul, Korea.
  28. Kim, J. W., G. Y. Shim and D. H. Lee. 1993. Occurrence of Anthracnose in turfgrasses caused by Colletotrichum graminicola (Ces.) Wilson and C. caudatum (Sacc.) Peck. Korean J. Plant Pathol. 9(3): 226-231. (In Korean)
  29. Kim, J. W., G. Y. Shim, H. J. Kim and D. H. Lee. 1992. Identification and pathogenicity of binucleate Rhizoctonia isolates causing leaf blight (Yellow patch) in turfgrass. Kor. Turfgrass Sci. 6(2): 99-112. (In Korean)
  30. Kim, K. C. 1976. The effect of ray on sclerotia formation of sclerotium disease. Korean J. Plant Protect. 15: 223-243. (In Korean).
  31. Kim, K. W. and D. G. Lee. 2007. Screening of herbicidal and fungicidal activities from resource plants in Korea. Kor. J. Weed Sci. 27(3): 285-295. (In Korean).
  32. Kim, M. Y. 2001. Isolation and identification of antioxidative flavonol compounds from Korean garlic by-products. Ph.D. Thesis, Kyungpook National University, Daegu. (In Korean).
  33. Kim, W. G. and W. D. Cho. 2002. Occurrence of Sclerotinia rot on composite vegetable crops and the causal Sclerotinia spp. Mycobiology 30: 41-46. https://doi.org/10.4489/MYCO.2002.30.1.041
  34. Ko, M. S. and J. B. Yang. 2011. Antioxidant and Antimicrobial Activities of Smilax china Leaf Extracts. Korean J Food Preserv. 18(5): 764-772. https://doi.org/10.11002/kjfp.2011.18.5.764
  35. Kwak, Y. K., I. S. Kim, M. C. Cho, S. C. Lee, and S. Kim. 2012. Growth Inhibition Effect of Environment-friendly Agricultural Materials in Botrytis cinerea In Vitro. Journal of Bio-Environment Control. 21(2): 134-139.
  36. Lee, C. K. and J. J. Seo. 2003. Antimicrobial activity of the aerial part of Artemisia capillaris extracts on the foodborne pathogens. J. Kor. Soc. Food Sci. Nutr. 32: 1227-1232 (in Korean). https://doi.org/10.3746/jkfn.2003.32.8.1227
  37. Lee, S. G., Y. J. Ahn, J. D. Park, J. C. Kim, K. Y. Cho, and H. S. Lee. 2001. Fungicidal activity of 46 plant extracts against rice leaf blast, rice sheath blight, tomato late blight, cucumber gray mold, barley powdery mildew and wheat leaf rust. Korean J. Pesticide Sci. 5(3): 18-25. (In Korean).
  38. Lee, Y. S. 1997. Biological control of soilborne pathogenic fungi of grasses. Korea Science and Engineering Foundation, Daejeon, Korea. (In Korean).
  39. Lee, Y. S., M. S. Kim, S. H. Lim, S. J. Heo, S. B. Kwon, and D. S. Park. 2004. Herbicidal activity of Korean native plants. Kor. J. Weed Sci. 24(2): 103-113. (In Korean).
  40. List of Plant Diseases in Korea. 2009a. The Korean Society of Plant Pathology. pp. 95-98.
  41. List of Plant Diseases in Korea. 2009b. The Korean Society of Plant Pathology. pp. 729-773.
  42. Osbourn, A. E. 1999. Antimicrobial phytoprotectans and fungal pathogens: A commentary. Fungal Gen. Biol. 26: 163-168. https://doi.org/10.1006/fgbi.1999.1133
  43. Park, S. M., H. J. Jung, and T. S. Yu. 2006. Screening of an Antagonistic Bacterium for Control of Red-pepper Anthracnose, Colletotrichum gloeosporioides. Journal of Life Science. 16(3): 420-426. (in Korean). https://doi.org/10.5352/JLS.2006.16.3.420
  44. Purdy, L. H. 1979. Sclerotinia sclerotiorum : History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69: 875-880. https://doi.org/10.1094/Phyto-69-875
  45. Rural Development Administration. 2000. Diagnosis and Control of Vegetable Crop Pest. Academy. p.330
  46. Seo, K. S. and K. W. Yun 2011. Antimicrobial Activity and Total Polyphenol Content of Extracts from Artemisia capillaris Thunb. and Artemisia iwayomogi Kitam. Used as Injin. Korean Journal of Plant Resources 24(1), 2011.2, 10-16. (In Korean). https://doi.org/10.7732/kjpr.2011.24.1.010
  47. Shim, G. Y. and H. K. Kim. 1995. Identification and pathogenicity of Rhizoctonia spp. isolated from turfgrasses in golf courses in Korea. Kor. Turfgrass Sci. 9(3): 235-252. (In Korean).
  48. Shim, G. Y., G. Y. Min, H. D. Shin, and H. J. Lee. 2000. Occurrence dollar spot caused by Sclerotinia homoeocarpa in turfgrass of golf course in Korea. Kor. Turfgrass Sci. 14(1): 241-250. (In Korean).
  49. Shim, G. Y., J. W. Kim, and H. K. Kim. 1994. Occurrence of Rhizoctonia Blight of Zoysiagrasses in golf courses in Korea. Korean J. Plant Pathol. 10(1): 54-60. (In Korean).
  50. Subbarao, K. V. 1998. Progress toward integrated management of lettuce drop. Plant Dis. 82: 1068-1078. https://doi.org/10.1094/PDIS.1998.82.10.1068
  51. Tan, K. H., R. Nishida, and Y. C. Toong. 2002. Floral synomone of a wild orchid, Bulbophyllum cheiri, lures Bactocera fruit flies for pollination. J. Chem. Ecol. 28: 1161-1172. https://doi.org/10.1023/A:1016277500007
  52. Whipps, J. M., S. P. Budge, S. McClement, and D. A. C. Pink. 2002. A glasshouse cropping method for screening lettuce lines for resistance to Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 108: 373-378. https://doi.org/10.1023/A:1015637018474