DOI QR코드

DOI QR Code

Pathogenesis of minimal change nephrotic syndrome: an immunological concept

  • Kim, Seong Heon (Department of Pediatrics, Pusan National University Children's Hospital) ;
  • Park, Se Jin (Department of Pediatrics, Daewoo General Hospital, Ajou University School of Medicine) ;
  • Han, Kyoung Hee (Department of Pediatrics, Jeju National University School of Medicine) ;
  • Kronbichler, Andreas (Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck) ;
  • Saleem, Moin A. (Children's and Academic Renal Unit, Dorothy Hodgkin Building-University of Bristol) ;
  • Oh, Jun (Department of Pediatrics, University Medical Center Hamburg-Eppendorf) ;
  • Lim, Beom Jin (Department of Pathology, Yonsei University College of Medicine) ;
  • Shin, Jae Il (Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine)
  • Received : 2014.12.18
  • Accepted : 2015.11.26
  • Published : 2016.05.15

Abstract

Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia. Minimal change nephrotic syndrome (MCNS) is the most common form of INS in children. The pathogenesis of MCNS still remains unclear, however, several hypotheses have been recently proposed. For several decades, MCNS has been considered a T-cell disorder, which causes the impairment of the glomerular filtration barrier with the release of different circulating factors. Increased levels of several cytokines are also suggested. Recently, a "two-hit" theory was proposed that included the induction of CD80 (B7-1) and regulatory T-cell (Treg) dysfunction, with or without impaired autoregulatory functions of the podocyte. In contrast to the well-established involvement of T cells, the role of B cells has not been clearly identified. However, B-cell biology has recently gained more attention, because rituximab (a monoclonal antibody directed against CD20-bearing cells) demonstrated a very good therapeutic response in the treatment of childhood and adult MCNS. Here, we discuss recent insights into the pathogenesis of MCNS in children.

Keywords

References

  1. Oh J, Kemper MJ. Minimal change (steroid sensitive) nephrotic syndrome in children: new aspects on pathogenesis and treatment. Minerva Pediatr 2012;64:197-204.
  2. Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet 2003;362:629-39. https://doi.org/10.1016/S0140-6736(03)14184-0
  3. Park SJ, Shin JI. Complications of nephrotic syndrome. Korean J Pediatr 2011;54:322-8. https://doi.org/10.3345/kjp.2011.54.8.322
  4. Churg J, Habib R, White RH. Pathology of the nephrotic syndrome in children: a report for the International Study of Kidney Disease in Children. Lancet 1970;760:1299-302.
  5. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 1974;2:556-60.
  6. Shimada M, Araya C, Rivard C, Ishimoto T, Johnson RJ, Garin EH. Minimal change disease: a "two-hit" podocyte immune disorder? Pediatr Nephrol 2011;26:645-9. https://doi.org/10.1007/s00467-010-1676-x
  7. Iijima K, Sako M, Nozu K, Mori R, Tuchida N, Kamei K, et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2014;384:1273-81. https://doi.org/10.1016/S0140-6736(14)60541-9
  8. Ravani P, Rossi R, Bonanni A, Quinn RR, Sica F, Bodria M, et al. Rituximab in children with steroid-dependent nephrotic syndrome: a multicenter, open-label, noninferiority, randomized controlled trial. J Am Soc Nephrol 2015;26:2259-66. https://doi.org/10.1681/ASN.2014080799
  9. Zhao Z, Liao G, Li Y, Zhou S, Zou H. The efficacy and safety of rituximab in treating childhood refractory nephrotic syndrome: a meta-analysis. Sci Rep 2015;5:8219. https://doi.org/10.1038/srep08219
  10. Park SS, Hahn WH, Kim SD, Cho BS. Remission of refractory minimal change nephrotic syndrome after basiliximab therapy. Pediatr Nephrol 2009;24:1403-7. https://doi.org/10.1007/s00467-009-1145-6
  11. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6:295-307. https://doi.org/10.1038/nri1806
  12. Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and--yet--unanswered questions. Autoimmun Rev 2015;14:105-16. https://doi.org/10.1016/j.autrev.2014.10.012
  13. Araya C, Diaz L, Wasserfall C, Atkinson M, Mu W, Johnson R, et al. T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol 2009;24:1691-8. https://doi.org/10.1007/s00467-009-1214-x
  14. Prasad N, Jaiswal AK, Agarwal V, Yadav B, Sharma RK, Rai M, et al. Differential alteration in peripheral T-regulatory and T-effector cells with change in P-glycoprotein expression in childhood nephrotic syndrome: a longitudinal study. Cytokine 2015;72:190-6. https://doi.org/10.1016/j.cyto.2014.12.028
  15. Park E, Chang HJ, Shin JI, Lim BJ, Jeong HJ, Lee KB, et al. Familial IPEX syndrome: different glomerulopathy in two siblings. Pediatr Int 2015;57:e59-61. https://doi.org/10.1111/ped.12570
  16. Pereira Wde F, Brito-Melo GE, Guimaraes FT, Carvalho TG, Mateo EC, Simoes e Silva AC. The role of the immune system in idiopathic nephrotic syndrome: a review of clinical and experimental studies. Inflamm Res 2014;63:1-12.
  17. Le Berre L, Bruneau S, Renaudin K, Naulet J, Usal C, Smit H, et al. Development of initial idiopathic nephrotic syndrome and posttransplantation recurrence: evidence of the same biological entity. Nephrol Dial Transplant 2011;26:1523-32. https://doi.org/10.1093/ndt/gfq597
  18. Bricio T, Molina A, Egido J, Gonzalez E, Mampaso F. IL-1-like production in adriamycin-induced nephrotic syndrome in the rat. Clin Exp Immunol 1992;87:117-21.
  19. Saxena S, Mittal A, Andal A. Pattern of interleukins in minimalchange nephrotic syndrome of childhood. Nephron 1993;65:56-61. https://doi.org/10.1159/000187441
  20. Kalinski P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 1997;159:28-35.
  21. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995;13:251-76. https://doi.org/10.1146/annurev.iy.13.040195.001343
  22. Matsumoto K, Kanmatsuse K. Increased IL-12 release by monocytes in nephrotic patients. Clin Exp Immunol 1999;117:361-7. https://doi.org/10.1046/j.1365-2249.1999.00975.x
  23. Stefanovic V, Golubovic E, Mitic-Zlatkovic M, Vlahovic P, Jovanovic O, Bogdanovic R. Interleukin-12 and interferon-gamma production in childhood idiopathic nephrotic syndrome. Pediatr Nephrol 1998;12:463-6. https://doi.org/10.1007/s004670050488
  24. Yildiz B, Cetin N, Kural N, Colak O. CD19 + CD23+ B cells, CD4 + CD25+ T cells, E-selectin and interleukin-12 levels in children with steroid sensitive nephrotic syndrome. Ital J Pediatr 2013;39:42. https://doi.org/10.1186/1824-7288-39-42
  25. Bustos C, Gonzalez E, Muley R, Alonso JL, Egido J. Increase of tumour necrosis factor alpha synthesis and gene expression in peripheral blood mononuclear cells of children with idiopathic nephrotic syndrome. Eur J Clin Invest 1994;24:799-805. https://doi.org/10.1111/j.1365-2362.1994.tb02022.x
  26. Suranyi MG, Guasch A, Hall BM, Myers BD. Elevated levels of tumor necrosis factor-alpha in the nephrotic syndrome in humans. Am J Kidney Dis 1993;21:251-9. https://doi.org/10.1016/S0272-6386(12)80742-6
  27. Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol 2008;181:3733-9. https://doi.org/10.4049/jimmunol.181.6.3733
  28. Matsumoto K, Kanmatsuse K. Interleukin-15 and interleukin-12 have an additive effect on the release of vascular permeability factor by peripheral blood mononuclear cells in normals and in patients with nephrotic syndrome. Clin Nephrol 1999;52:10-8.
  29. Wang LM, Chi YJ, Wang LN, Nie L, Zou YH, Zhao TN, et al. Expression of interleukin-6 in rat model of doxorubicin-induced nephropathy. Zhongguo Dang Dai Er Ke Za Zhi 2010;12:912-4.
  30. Assadi F. Neonatal nephrotic syndrome associated with placental transmission of proinflammatory cytokines. Pediatr Nephrol 2011;26:469-71. https://doi.org/10.1007/s00467-010-1700-1
  31. Apostolopoulos J, Davenport P, Tipping PG. Interleukin-8 production by macrophages from atheromatous plaques. Arterioscler Thromb Vasc Biol 1996;16:1007-12. https://doi.org/10.1161/01.ATV.16.8.1007
  32. Kanai T, Yamagata T, Momoi MY. Macrophage inflammatory protein- 1beta and interleukin-8 associated with idiopathic steroidsensitive nephrotic syndrome. Pediatr Int 2009;51:443-7. https://doi.org/10.1111/j.1442-200X.2008.02759.x
  33. Souto MF, Teixeira AL, Russo RC, Penido MG, Silveira KD, Teixeira MM, et al. Immune mediators in idiopathic nephrotic syndrome: evidence for a relation between interleukin 8 and proteinuria. Pediatr Res 2008;64:637-42. https://doi.org/10.1203/PDR.0b013e318186ddb2
  34. Daniel V, Trautmann Y, Konrad M, Nayir A, Scharer K. T-lymphocyte populations, cytokines and other growth factors in serum and urine of children with idiopathic nephrotic syndrome. Clin Nephrol 1997;47:289-97.
  35. Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol 2010;10:170-81. https://doi.org/10.1038/nri2711
  36. Matsumoto K. Decreased release of IL-10 by monocytes from patients with lipoid nephrosis. Clin Exp Immunol 1995;102:603-7.
  37. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004;75:163-89. https://doi.org/10.1189/jlb.0603252
  38. Neuhaus TJ, Wadhwa M, Callard R, Barratt TM. Increased IL-2, IL-4 and interferon-gamma (IFN-gamma) in steroid-sensitive nephrotic syndrome. Clin Exp Immunol 1995;100:475-9.
  39. Yap HK, Cheung W, Murugasu B, Sim SK, Seah CC, Jordan SC. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol 1999;10:529-37.
  40. Shalaby SA, Al-Edressi HM, El-Tarhouny SA, Fath El-Bab M, Zolaly MA. Type 1/type 2 cytokine serum levels and role of interleukin-18 in children with steroid-sensitive nephrotic syndrome. Arab J Nephrol Transplant 2013;6:83-8.
  41. Kawakami K, Koguchi Y, Qureshi MH, Miyazato A, Yara S, Kinjo Y, et al. IL-18 contributes to host resistance against infection with Cryptococcus neoformans in mice with defective IL-12 synthesis through induction of IFN-gamma production by NK cells. J Immunol 2000;165:941-7. https://doi.org/10.4049/jimmunol.165.2.941
  42. Matsumoto K, Kanmatsuse K. Elevated interleukin-18 levels in the urine of nephrotic patients. Nephron 2001;88:334-9. https://doi.org/10.1159/000046017
  43. Matsumoto K, Kanmatsuse K. Augmented interleukin-18 production by peripheral blood monocytes in patients with minimalchange nephrotic syndrome. Am J Nephrol 2001;21:20-7. https://doi.org/10.1159/000046214
  44. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003;3:253-7. https://doi.org/10.1038/nri1032
  45. Lama G, Luongo I, Tirino G, Borriello A, Carangio C, Salsano ME. T-lymphocyte populations and cytokines in childhood nephrotic syndrome. Am J Kidney Dis 2002;39:958-65. https://doi.org/10.1053/ajkd.2002.32769
  46. Shimoyama H, Nakajima M, Naka H, Maruhashi Y, Akazawa H, Ueda T, et al. Up-regulation of interleukin-2 mRNA in children with idiopathic nephrotic syndrome. Pediatr Nephrol 2004;19:1115-21.
  47. Cheung W, Wei CL, Seah CC, Jordan SC, Yap HK. Atopy, serum IgE, and interleukin-13 in steroid-responsive nephrotic syndrome. Pediatr Nephrol 2004;19:627-32. https://doi.org/10.1007/s00467-004-1438-8
  48. Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 2007;18:1476-85. https://doi.org/10.1681/ASN.2006070710
  49. Kim JE, Park SJ, Ha TS, Shin JI. Effect of rituximab in MCNS: a role for IL-13 suppression? Nat Rev Nephrol 2013;9:551.
  50. Wei CL, Cheung W, Heng CK, Arty N, Chong SS, Lee BW, et al. Interleukin-13 genetic polymorphisms in Singapore Chinese children correlate with long-term outcome of minimal-change disease. Nephrol Dial Transplant 2005;20:728-34. https://doi.org/10.1093/ndt/gfh648
  51. Park SJ, Saleem MA, Nam JA, Ha TS, Shin JI. Effects of interleukin- 13 and montelukast on the expression of zonula occludens-1 in human podocytes. Yonsei Med J 2015;56:426-32. https://doi.org/10.3349/ymj.2015.56.2.426
  52. Kim BS, Park HC, Kang SW, Choi KH, Ha SK, Han DS, et al. Impact of cyclosporin on podocyte ZO-1 expression in puromycin aminonucleoside nephrosis rats. Yonsei Med J 2005;46:141-8. https://doi.org/10.3349/ymj.2005.46.1.141
  53. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004;113:1390-7. https://doi.org/10.1172/JCI20402
  54. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol 2009;20:260-6. https://doi.org/10.1681/ASN.2007080836
  55. Cara-Fuentes G, Wei C, Segarra A, Ishimoto T, Rivard C, Johnson RJ, et al. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatr Nephrol 2014;29:1363-71. https://doi.org/10.1007/s00467-013-2679-1
  56. Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 2010;78:296-302. https://doi.org/10.1038/ki.2010.143
  57. Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal- Jimenez CA, et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-${\kappa}B$-dependent pathway. Nephrol Dial Transplant 2012;27:81-9. https://doi.org/10.1093/ndt/gfr271
  58. Ishimoto T, Shimada M, Gabriela G, Kosugi T, Sato W, Lee PY, et al. Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol Dial Transplant 2013;28:1439-46. https://doi.org/10.1093/ndt/gfs543
  59. Lagrue G, Xheneumont S, Branellec A, Hirbec G, Weil B. A vascular permeability factor elaborated from lymphocytes. I. Demonstration in patients with nephrotic syndrome. Biomedicine 1975;23:37-40.
  60. Heslan JM, Branellec AI, Pilatte Y, Lang P, Lagrue G. Differentiation between vascular permeability factor and IL-2 in lymphocyte supernatants from patients with minimal-change nephrotic syndrome. Clin Exp Immunol 1991;86:157-62.
  61. Matsumoto K, Kanmatsuse K. Transforming growth factor-beta1 inhibits vascular permeability factor release by T cells in normal subjects and in patients with minimal-change nephrotic syndrome. Nephron 2001;87:111-7. https://doi.org/10.1159/000045898
  62. Cheung PK, Stulp B, Immenschuh S, Borghuis T, Baller JF, Bakker WW. Is 100KF an isoform of hemopexin? Immunochemical characterization of the vasoactive plasma factor 100KF. J Am Soc Nephrol 1999;10:1700-8.
  63. Cheung PK, Klok PA, Baller JF, Bakker WW. Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 2000;57:1512-20. https://doi.org/10.1046/j.1523-1755.2000.00996.x
  64. Bakker WW, van Dael CM, Pierik LJ, van Wijk JA, Nauta J, Borghuis T, et al. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol 2005;20:1410-5. https://doi.org/10.1007/s00467-005-1936-3
  65. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 2008;19:2140-9. https://doi.org/10.1681/ASN.2007080940
  66. Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 2011;17:117-22. https://doi.org/10.1038/nm.2261
  67. Clement LC, Mace C, Avila-Casado C, Joles JA, Kersten S, Chugh SS. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 2014;20:37-46. https://doi.org/10.1038/nm.3396
  68. Yokoyama H, Kida H, Tani Y, Abe T, Tomosugi N, Koshino Y, et al. Immunodynamics of minimal change nephrotic syndrome in adults T and B lymphocyte subsets and serum immunoglobulin levels. Clin Exp Immunol 1985;61:601-7.
  69. Yokoyama H, Kida H, Abe T, Koshino Y, Yoshimura M, Hattori N. Impaired immunoglobulin G production in minimal change nephrotic syndrome in adults. Clin Exp Immunol 1987;70:110-5.
  70. Audard V, Pawlak A, Candelier M, Lang P, Sahali D. Upregulation of nuclear factor-related kappa B suggests a disorder of transcriptional regulation in minimal change nephrotic syndrome. PLoS One 2012;7:e30523. https://doi.org/10.1371/journal.pone.0030523
  71. Shin JI, Kronbichler A. Rituximab for patients with nephrotic syndrome. Lancet 2015;385:225-6. https://doi.org/10.1016/S0140-6736(15)60050-2
  72. Kronbichler A, Bruchfeld A. Rituximab in adult minimal change disease and focal segmental glomerulosclerosis. Nephron Clin Pract 2014;128:277-82. https://doi.org/10.1159/000368590
  73. Kronbichler A, Kerschbaum J, Fernandez-Fresnedo G, Hoxha E, Kurschat CE, Busch M, et al. Rituximab treatment for relapsing minimal change disease and focal segmental glomerulosclerosis: a systematic review. Am J Nephrol 2014;39:322-30. https://doi.org/10.1159/000360908
  74. Iijima K, Sako M, Nozu K. Rituximab treatment for nephrotic syndrome in children. Curr Pediatr Rep 2015;3:71-7. https://doi.org/10.1007/s40124-014-0065-5

Cited by

  1. Clinical characteristics and risk factors of severe infections in hospitalized adult patients with primary nephrotic syndrome vol.45, pp.6, 2016, https://doi.org/10.1177/0300060517715339
  2. Recent advances in understanding and treating nephrotic syndrome vol.6, pp.None, 2017, https://doi.org/10.12688/f1000research.10165.1
  3. A unified pathogenesis for kidney diseases, including genetic diseases and cancers, by the protein-homeostasis-system hypothesis vol.36, pp.2, 2017, https://doi.org/10.23876/j.krcp.2017.36.2.132
  4. Eosinophilia and Kidney Disease: More than Just an Incidental Finding? vol.7, pp.12, 2018, https://doi.org/10.3390/jcm7120529
  5. Minimal change disease and malaria vol.12, pp.2, 2016, https://doi.org/10.1093/ckj/sfy029
  6. Compositional alterations of gut microbiota in children with primary nephrotic syndrome after initial therapy vol.20, pp.1, 2016, https://doi.org/10.1186/s12882-019-1615-4
  7. The Use of Immune Checkpoint Inhibitors in Oncology and the Occurrence of AKI: Where Do We Stand? vol.11, pp.None, 2016, https://doi.org/10.3389/fimmu.2020.574271
  8. Idiopathic nephrotic syndrome and serum permeability factors: a molecular jigsaw puzzle vol.379, pp.2, 2020, https://doi.org/10.1007/s00441-019-03147-y
  9. CD80 Insights as Therapeutic Target in the Current and Future Treatment Options of Frequent-Relapse Minimal Change Disease vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6671552
  10. Kidney injury associated with antitumor therapy: focus on the adverse events of modern immuno-oncological drugs vol.93, pp.6, 2016, https://doi.org/10.26442/00403660.2021.06.200860
  11. Expression profiling of cultured podocytes exposed to nephrotic plasma reveals intrinsic molecular signatures of nephrotic syndrome vol.64, pp.7, 2016, https://doi.org/10.3345/cep.2020.00619
  12. Low regulatory T-cells: A distinct immunological subgroup in minimal change nephrotic syndrome with early relapse following rituximab therapy vol.235, pp.None, 2016, https://doi.org/10.1016/j.trsl.2021.03.019