
205http://dx.doi.org/10.3345/kjp.2016.59.5.205

Korean J Pediatr 2016;59(5):205-211

Pathogenesis of minimal change nephrotic syn
drome: an immunological concept 
Seong Heon Kim, MD1,*, Se Jin Park, MD, PhD2,*, Kyoung Hee Han, MD, PhD3, Andreas Kronbichler, MD4, Moin A. Saleem, MBBS, FRCP, 
PhD5, Jun Oh, MD6, Beom Jin Lim, MD, PhD7, Jae Il Shin, MD, PhD8

1Department of Pediatrics, Pusan National University Children’s Hospital, Yangsan, 2Department of Pediatrics, Daewoo General Hospital, Ajou University School 
of Medicine, Geoje, 3Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea, 4Department of Internal Medicine IV (Nephrology and 
Hypertension), Medical University Innsbruck, Innsbruck, Austria, 5Children’s and Academic Renal Unit, Dorothy Hodgkin Building–University of Bristol, Bristol, UK, 
6Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 7Department of Pathology, Yonsei University College of Medicine, 
Seoul, 8Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Korea

Idiopathic nephrotic syndrome ( INS) in children is characterized by massive proteinuria and 
hypoalbuminemia. Minimal change nephrotic syndrome (MCNS) is the most common form of INS in 
children. The pathogenesis of MCNS still remains unclear, however, several hypotheses have been 
recently proposed. For several decades, MCNS has been considered a T-cell disorder, which causes 
the impairment of the glomerular filtration barrier with the release of different circulating factors. 
Increased levels of several cytokines are also suggested. Recently, a “two-hit” theory was proposed 
that included the induction of CD80 (B7-1) and regulatory T-cell (Treg) dysfunction, with or without 
impaired autoregulatory functions of the podocyte. In contrast to the well-established involvement of 
T cells, the role of B cells has not been clearly identified. However, B-cell biology has recently gained 
more attention, because rituximab (a monoclonal antibody directed against CD20-bearing cells) 
demonstrated a very good therapeutic response in the treatment of childhood and adult MCNS. Here, 
we discuss recent insights into the pathogenesis of MCNS in children.
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Introduction

Idiopathic nephrotic syndrome (INS) is a common chronic illness characterized 
by massive proteinuria and hypoalbuminemia in children1,2). Massive urinary loss of 
serum proteins can cause a hypercoagulable state, the dysregulation of fluid, electrolyte 
imbalance, and susceptibility to infections3). The International Study of Kidney Disease 
in Childhood reported that 84.5% of children with INS had minimal change nephrotic 
syndrome (MCNS), 9.5% had focal segmental glomerulosclerosis (FSGS), 2.5% had 
mesangial proliferative glomerulonephritis, and 3.5% had membranous nephropathy 
or other diseases leading to nephrotic-range proteinuria4). The pathological hallmark of 
MCNS is the effacement of foot processes in glomeruli, revealed by ultrastructural analysis, 
without any inflammatory injury or immune complex deposition2).  

Eighty to ninety percent of children with INS respond to steroid treatment2). Unfor-
tunately, 60%–80% of the children with steroid-responsive nephritic syndrome rela-
pse, but they almost never develop end-stage renal disease (ESRD)2). Resistance to 
immunosuppressant therapy, including glucocorticoid and cyclosporin A, occurs in 50% of 
FSGS cases and 10% of MCNS cases, which is associated with progression to ESRD. 

More than four decades ago, MCNS was considered as an exclusive systemic disorder of 
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T cells and cell-mediated immunity5). Increased levels of various 
cytokines were also suggested as one aspect of the pathogenesis. 
Recently, Shimada et al.6) proposed a “two-hit” theory that 
included the induction of CD80 (or B7-1) and regulatory T-cell 
(Treg) dysfunction, with or without impaired autoregulatory 
function of the podocytes (Fig. 1). B-cell biology has also attained 
great attention, since rituximab, a monoclonal antibody directed 
against CD20-bearing cells, showed good therapeutic potential 
in the treatment of both childhood and adulthood MCNS7–9). 
However, the precise pathophysiology of MCNS still remains 
elusive. We hereby discuss immunological insights and recent 
findings on the pathogenesis of MCNS. 

T-cell signal transduction and abnormal Tregs

Approximately 40 years ago, Shalhoub5) proposed a major 
hypothesis that MCNS was caused by a circulating factor deriv-
ed from dysfunctional T cells. This hypothesis was based on 
several findings, such as the presence of no immune complexes 
in glomeruli, a good response to steroids, and frequent remis sion 
after measles infection, which led to cell-mediated immuno-
suppression5). For example, treatments of T-cell suppressive drugs, 
such as cyclosporin A and basiliximab (an anti-interleukin [IL]-2 
receptor antibody), were effective in some patients with MCNS2,10).

In the last decades, it has been found that Tregs are a distinct 
subset of T-lymphocytes that play a pivotal role in maintaining 
immune homeostasis and tolerance to self-antigens11). The 
dysregulation of Tregs has been shown to be important in the 
pathogenesis of several autoimmune diseases, such as rheumatoid 
arthritis and systemic lupus erythematosus12). Recently, it has 
also been suggested that Tregs play an important role in the 
pathogenesis of MCNS13,14). Shimada et al.6) reported Treg 

dysfunction and/or impaired autoregulatory function by the 
podocyte have the potential to turn off CD80 expression once 
it is induced. Treg dysfunction could make transient massive 
proteinuria persistent, leading to podocyte injury, and eventually, 
MCNS6). Transient massive proteinuria is typically triggered 
by viral infections, bacterial infections, or allergen- or T-cell-
mediated release of cytokines (e.g., IL-13, etc.)6). 

The importance of the association between Tregs and ne-
phrotic syndrome is highlighted by immune dysregulation, 
polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome 
with concomitant nephrotic syndrome15). IPEX syndrome is a rare 
disorder of the immune regulatory system caused by mutations 
of FOXP3, which is a transcription factor responsible for the 
generation and maturation of Tregs, and the development of 
MCNS in IPEX syndrome can be explained by Treg dysfunction15). 
However, the reason behind children with MCNS having Treg 
impairment and/or podocyte autoregulation is still unknown. 

Cytokine profiles in MCNS

Some studies have shown an association between various 
cytokines and proteinuria, and stated that glomerular permeability 
factors can be responsible for nephrotic syndrome in patients or 
in animal models of the proteinuric disease16). Accordingly, the 
increase in monocyte/macrophage cytokines, including IL-1, IL-
12, and tumor necrosis factor-alpha (TNF-α), was important in 
the initiation and recurrence of INS17). In rats with adriamycin-
induced nephrotic syndrome, IL-1 produced by resident glo-
merular macrophages was associated with proteinuria18). In 
supernatants from children with MCNS, the levels of IL-1 were 
found to be elevated19).

IL-12, secreted by dendritic cells and macrophages, is also 
recognized as a T cell-stimulating factor20). It enhances the 
cytotoxic activity of natural killer cells and cytotoxic T-lym-
phocytes21). IL-12 levels were increased during the active clinical 
phase of MCNS in peripheral blood monocyte cultures (PBMC)22). 
On the contrary, some reports could not detect any IL-12 in 
serum, urine, and supernatants of PBMC from children with 
steroid sensitive nephritic syndrome (SSNS)23). Serum IL-12 levels 
were not significantly disparate between the active phase and 
remission phase of SSNS24).

TNF-α was increased in the blood and urine of children with 
NS, and mRNA expression was also increased in PBMC of these 
patients25,26). TNF-α has been found to induce glomerular injury 
in experimental MCNS25). IL-15 derived from mononuclear 
phagocytes following infections induced the differentiation of 
immature T-helper cells27). This cytokine mimics the stimulatory 
function of IL-2 on T cells and is believed to cause the release 
of the vascular permeability factor by PBMCs from nephrotic 

Fig. 1. Two hit theory in podocyte immune disorder. IL, interleukin; CTLA-
4, cytotoxic T-lymphocyte antigen 4; TGF, transforming growth factor. 
Adapted from Shimada et al. Pediatr Nephrol 2011;26:645-9, with 
permission of Springer6).



207http://dx.doi.org/10.3345/kjp.2016.59.5.205

Korean J Pediatr 2016;59(5):205-211

patients in combination with IL-1228). 
In addition to these cytokines, other monocyte/macrophage-

related cytokines are IL-6, IL-8, IL-10, interferon-gamma (IFN-γ), 
and IL-1829-40). IL-6 expression in the urine and renal tissues was 
correlated with proteinuria in MCNS rats9). Also, serum IL-8 levels 
were higher in the initial nephrotic phase than in the remission 
phase in children with SSNS, and urinary concentrations of IL-8 
were correlated with proteinuria in children with NS32,33). In con-
trast, however, Daniel et al.34) reported that serum IL-8 levels were 
decreased in cases of SSNS compared to healthy controls. IL-10 
is mainly produced by monocytes, which have the capacity to 
reduce the release of proinflammatory cytokines, such as IFN-γ, 
IL-2, and TNF-α35). In the study by Matsumoto36), the release of 
IL-10 was lower in the supernatants of PBMC from patients with 
MCNS than from that of controls.

T-helper cells, cytotoxic T cells, natural killer cells, and ma-
cro phages secrete IFN-γ, which is shown to promote Th1 differ-
entiation, eventually leading to cellular immunity and simul-
taneously inhibiting Th2 differentiation37). The concentration 
of IFN-γ was not increased in cases of relapse of children with 
SSNS38,39). Serum IFN-γ was significantly lower in the active 
phase of NS compared with the remission phase40).

IL-18 is produced by macrophages, and in combination with 
IL-12, it plays a pivotal role in cell-mediated immunity following 
infection41). Urinary levels of IL-18 correlated with disease activity 
in patients with MCNS42). Similarly, IL-18 levels in vitro were 
related to the disease activity in MCNS patients43). Serum levels of 
IL-18 correlated with both IL-4 and IL-13 in childhood SSNS40).

IL-2 promotes the differentiation of immature T cells into Tregs 
and is implicated in the “battle” against infections and prevention 
of autoimmune diseases44). IL-2 concentrations were significantly 
increased during relapse when than that during remission in 
children with SSNS34,38,45). The IL-2 mRNA expression was also 
significantly higher in the acute phase than in the remission 
phase of childhood INS46).

Th2 cytokines, such as IL-13, have been highlighted in the 
pathogenesis of MCNS39,47-49). CD4+ and CD8+ IL-13 mRNA ex-
pression increased during relapse than that during remission in 
children with SSNS39,47). IL-13 overexpression led to podocyte 
injury in MCNS rat models48). Serum IgE levels are elevated during 
relapse in SSNS and were correlated with IL-13 upregulation47).

Overexpression of IL-13 and CD 80 (B7-1) in MCNS

Recent studies have identified that increased IL-13 expression 
can lead to podocyte injury and can induce a MCNS-like pheno-
type39,57,50). An increase in IL-13 production by CD3+, CD4+, 
and CD8+ T cells was shown to mediate SSNS39,47). Although no 
significant histologic changes were observed in the glomeruli 

of IL-13-transfected rats, they clinically exhibited substantial 
proteinuria, hypoalbuminemia, and hypercholesterolemia48). 
Electron microscopy revealed up to 80% effacement of podocyte 
foot processes, which progressed to nephrotic syndrome48). 
Notably, overexpression of IL-13 caused the downregulation of 
nephrin, podocin, and dystroglycan. These proteins are critical 
molecules in maintaining slit diaphragm (SD) integrity, and the 
concurrent upregulation of CD80, IL-4Rα, and IL-13Rα2 in IL-13-
transfected rats48). 

More recently, Park et al.51,52) reported that IL-13 significantly 
decreased zonula occludens-1 (ZO-1) protein levels in human 
podocytes, whereas ZO-1 protein production was significantly 
increased in a rat model of puromycin aminonucleoside nephro-
sis. They demonstrated that IL-13 alters the expression of ZO-
1, and such alterations in the content and distribution of ZO-1 
may also be relevant to the pathogenesis of proteinuria in the 
MCNS model, which was significantly restored after treatment 
with a leukotriene receptor antagonist51). Therefore, these findings 
can further strengthen the hypothesis that IL-13 may increase 
podocyte permeability through the modulation of SD proteins, 
resulting in nephrotic-range proteinuria, namely MCNS, and also 
provide an explanation for the plausible connection among Th2 
cytokines, MCNS, and atopy.

Increased IL-13 also induced the upregulation of CD80, IL-
4Rα, and IL-13Rα2. CD80, a cell surface glycoprotein expressed 
on activated B lymphocytes, is a dendritic-associated receptor 
that acts as a costimulatory signaling molecule of the T cell when 
bound to CD28 expressed on T cells53). Exposure to low-dose 
lipopolysaccharide (LPS) was shown to upregulate CD80 in the 
podocytes of wild type and severe combined immunodeficient 
mice in vivo, which caused nephrotic-range proteinuria53). Mice 
lacking CD80 are protected from LPS-induced NS, which suggests 
a link between podocyte CD80 expression and proteinuria53). 
Tregs are known to inhibit the immune response by releasing 
soluble cytotoxic T-lymphocyte antigen 4 (sCTLA-4), IL-10, and 
transforming growth factor (TGF)-β, which can suppress CD80 
expression on the antigen presenting cells (APCs). This leads to a 
blockade of the costimulatory activation of T cells54). Therefore, 
the immune response is initiated by the activation of CD80 on 
APCs, and over time, negatively regulated, with the Treg playing 
a pivotal role in this process.

In MCNS, it has been supposed that local mediators, such as 
podocyte-derived angiopoietin-like-4 (Angptl-4) and CD80, 
may be implicated in the pathogenesis of MCNS55). Theoretically, 
a number of cells within the human kidney may be able to 
secrete CD80, including podocytes, macrophages, dendritic cells, 
and tubular cells54). Overexpression of CD80 in podocytes has 
been observed in genetic, immune-mediated, drug-induced, 
and bacterial toxin-induced experimental kidney diseases with 
nephrotic syndrome56).
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Urinary soluble CD80 was significantly increased in MCNS 
patients during relapse when compared with healthy controls 
and MCNS patients during remission or with FSGS56). Urinary 
CD80 correlated with disease activity. The urinary CD80/CTLA-
4 ratio was more than 100 folds higher in patients with relapsed 
MCNS compared with those in remission. In addition, CD80 
was observed in glomeruli by immunohistochemical staining 
in seven biopsy specimens of eight patients with MCNS during 
relapse56). Western blotting was also performed to distinguish 
between urinary soluble CD80 (MW 23 kDa) and membrane-
associated CD80 (MW 53 kDa). Urinary CD80 was present as an 
approximately 53 kDa large protein, which suggests cell mem-
brane-associated urinary CD8056). CD80 expression and CD80 
protein secretion by podocytes were significantly increased in 
sera from patients with MCNS in relapse compared with sera from 
patients in remission53). Further studies addressed if CD80 and 
soluble urokinase plasminogen activator receptor (suPAR) levels 
are able to be reliably used to distinguish between MCNS and 
FSGS. However, urinary suPAR levels were not distinguishable 
between both diseases, while urinary CD80 levels were signifi-
cantly increased in MCNS patients in relapse compared to those 
in remission and FSGS patients55). 

LPS was capable of enhancing the expression of CD80 in 
podocytes, leading to nephrotic-range proteinuria53). CD80 was 
colocalized with the podocyte synaptopodin in human and 
murine kidney tissue specimens53). Activation of CD80 in cultured 
podocytes led to the reorganization of vital SD proteins, whereas 
LPS-signaling pathway through the toll-like receptor (TLR)-4 
led to the reorganization of the podocyte actin cytoskeleton in 
vivo53). Therefore, CD80 may contribute to the pathogenesis of 
proteinuria by disrupting the SD structure53). 

To depict pathogenetic pathways regulating and driving CD80 
induction in podocytes, several studies were performed57,58). 
Polyinosinic-polycytidylic acid (polyIC) induced types I and 
II interferon signaling, nuclear factor kappa B activation, and 
the induction of CD80 expression, but dexamethasone blocked 
both basal and polyIC-stimulated CD80 expression, as did the 
inhibition of nuclear factor kappa B57). Intravenous injection of 
polyIC-LMW into mice resulted in significant albuminuria and 
led to increased urinary CD80 excretion58). Partial foot process 
fusion in glomeruli was seen by electron microscopy58).

It has been proposed that MCNS is  a “two-hit” disorder6). The 
initial hit is the induction of CD80 on the podocyte, resulting in 
an alteration in shape with actin disruption that causes increased 
glomerular permeability and proteinuria6). The second hit is 
usually caused by the ineffective censoring of podocyte CD80 
due to Treg dysfunction or impaired podocyte autoregulation and 
reduced CTLA-4, IL-10, or TGF-β response. CD80 expression may 
result from either direct binding of the podocyte by activated 
T-cell cytokines such as IL-13, or by activation of podocyte TLR 

by microbial products or allergens6). In normal circumstances, 
CD80 expression on podocytes is terminated by Treg cytokines or 
CTLA-4 and IL-10 by podocytes. However, if a second hit occurs 
in MCNS and abnormal censoring of podocyte CD80 expression 
continues due to a defective autoregulatory response by Tregs 
or by the podocyte itself, CD80 expression persists and results in 
MCNS6). An important experiment that has yet to be done is that 
of podocyte specific overexpression of CD80, which would clarify 
a direct effector role of CD80 in inducing proteinuria.

What do we know about the role of circulatory 
factors in MCNS?

The implicated role of circulatory factors in the etiopatho-
genesis of MCNS has long been postulated. Vascular permeability 
factor, elaborated from concanavalin A-stimulated lymphocytes 
obtained from patients with MCNS, acts on systemic capillaries 
and on the glomerular permeability barrier59). The effects on 
the vasculature mimic the effects of IL-2 on permeability59). 
However, lymphocytes from MCNS patients with high vascular 
permeability factor activity revealed low amounts of IL-2, and 
immunoadsorption leading to the complete removal of IL-2 
did not affect vascular permeability factor activity60). It became 
apparent that its secretion is increased by IL-2, IL-12, IL-15, 
and IL-18, whereas the addition of TGF-β to concanavalin 
A-stimulated MCNS T cells inhibited the release of the vascular 
permeability factor61).

In 1999, it was hypothesized that the vascular permeability 
factor 100KF, which has a role in MCNS, is closely related to 
hemopexin62). Plasma hemopexin was capable of inducing signi-
ficant proteinuria and glomerular alterations, resembling MCNS63). 
Furthermore, it was shown that the mean titer of hemopexin is 
decreased during relapse, and compared to remission samples and 
other glomerulopathies, significant upregulation of hemopexin 
plasma activity and different hemopexin fragments were 
demonstrated during relapse64). It was concluded that active 
hemopexin could be present in an altered isoform64). Hemopexin-
treated human podocytes showed marked actin reorganization 
after 30 minutes, which was reversible after four hours and led 
to the activation of protein kinase B, as well as RhoA. Moreover, 
Lennon et al.65) postulated a nephrin-dependent process, since 
these changes did not occur in nephrin-deficient podocytes .

Interestingly, a role for the glomerular secretion of Angptl-4 
was proposed66). A podocyte-specific transgenic model (NPHS-
Angptl-4) revealed a 500-fold increase in albuminuria in ho-
mozygous males over time, whereas adipose tissue-secreted 
Angptl-4 could not induce any proteinuria66). Electron micro-
scopy showed a selective Angptl-4 signal in glomeruli and 
foot-process effacement in 5-month-old homozygous rats66). 
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Glucocorticoid treatment reversed the sharp increase of Angptl-4 
mRNA expression66). The initial enthusiasm was hampered due to 
the finding that Angptl-4 is increased in other diseases, leading 
to nephrotic-range proteinuria as well67). Angptl-4 is secreted in 
response to an elevation in the ratio of plasma free fatty acids to 
albumin, in terms of heavy proteinuria, reducing proteinuria but 
resulting in hypertriglyceridemia67).

B-cell abnormality and efficacy of rituximab

In contrast to the well-established involvement of T cells in 
MCNS, the role of B cells is not yet certain. Despite an observed 
association between allergic diathesis and the onset of MCNS, an 
elevation of IgM, IgE, B-lymphocytes, and their subsets, surface 
IgM-, IgG-, and IgE-positive cells (Bγ, Bµ, and Bε) were already 
described in an earlier study68). In nephrotic patients, an increase 
in cytoplasmic Bγ (cBγ) was shown with an elevated cBγ/surface 
Bγ, which normalized during steroid treatment and increased 
again after withdrawal69). Recently, it was also shown that nuclear 
factor-related kappa B is upregulated during the relapse of MCNS, 
mainly in CD4+ T cells and B cells, and this induces the activation 
of AP1 signaling70). 

B-cell biology, however, has attained more attention lately, 
since treatment with rituximab, a monoclonal antibody directed 
against CD20 bearing cells, has shown good therapeutic responses 
in the treatment of both childhood and adulthood MCNS7,71–73). 
Children with frequently relapsing nephrotic syndrome or steroid-
dependent nephrotic syndrome had a significantly longer relapse-
free period in the rituximab group compared to the control 
group7,8,73). Moreover, fewer patients with a significantly longer 
time to treatment failure were reported in the rituximab group7). 
Concurrent steroid treatment could be significantly reduced 
following rituximab initiation, while the rate of serious adverse 
events did not differ between both groups7). Subsequently, rituxi-
mab treatment has been licensed for the treatment of steroid-
dependent and frequently relapsing nephrotic syndrome by the 
Ministry of Health, Labor and Welfare in Japan74).

Conclusions

Here, we reviewed the pathogenesis of MCNS from an immu-
nological perspective. Recent studies propose that the pathogenesis 
of MCNS could involve both lymphocytes and po docytes. Further 
studies are required to elucidate the exact pathophysiology of 
MCNS, and the development of novel drugs that target podocytes 
and immunosuppressants for lymphocytes are also needed.
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