DOI QR코드

DOI QR Code

Cognitive impairment in childhood onset epilepsy: up-to-date information about its causes

  • Kim, Eun-Hee (Department of Pediatrics, CHA Gangnam Medical Center, CHA University) ;
  • Ko, Tae-Sung (Division of Pediatric Neurology, Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine)
  • 투고 : 2015.08.21
  • 심사 : 2015.11.16
  • 발행 : 2016.04.15

초록

Cognitive impairment associated with childhood-onset epilepsy is an important consequence in the developing brain owing to its negative effects on neurodevelopmental and social outcomes. While the cause of cognitive impairment in epilepsy appears to be multifactorial, epilepsy-related factors such as type of epilepsy and underlying etiology, age at onset, frequency of seizures, duration of epilepsy, and its treatment are considered important. In recent studies, antecedent cognitive impairment before the first recognized seizure and microstructural and functional alteration of the brain at onset of epilepsy suggest the presence of a common neurobiological mechanism between epilepsy and cognitive comorbidity. However, the overall impact of cognitive comorbidity in children with epilepsy and the independent contribution of each of these factors to cognitive impairment have not been clearly delineated. This review article focuses on the significant contributors to cognitive impairment in children with epilepsy.

키워드

참고문헌

  1. Berg AT, Caplan R, Hesdorffer DC. Psychiatric and neurodevelopmental disorders in childhood-onset epilepsy. Epilepsy Behav 2011;20:550-5. https://doi.org/10.1016/j.yebeh.2010.12.038
  2. Fastenau PS, Johnson CS, Perkins SM, Byars AW, deGrauw TJ, Austin JK, et al. Neuropsychological status at seizure onset in children: risk factors for early cognitive deficits. Neurology 2009; 73:526-34. https://doi.org/10.1212/WNL.0b013e3181b23551
  3. Berg AT, Zelko FA, Levy SR, Testa FM. Age at onset of epilepsy, pharmacoresistance, and cognitive outcomes: a prospective cohort study. Neurology 2012;79:1384-91. https://doi.org/10.1212/WNL.0b013e31826c1b55
  4. Bailet LL, Turk WR. The impact of childhood epilepsy on neurocognitive and behavioral performance: a prospective longitudinal study. Epilepsia 2000;41:426-31. https://doi.org/10.1111/j.1528-1157.2000.tb00184.x
  5. Bromley RL, Leeman BA, Baker GA, Meador KJ. Cognitive and neurodevelopmental effects of antiepileptic drugs. Epilepsy Behav 2011;22:9-16. https://doi.org/10.1016/j.yebeh.2011.04.009
  6. Park J, Yum MS, Choi HW, Kim EH, Kim HW, Ko TS. Determinants of intelligence in childhood-onset epilepsy: a single-center study. Epilepsy Behav 2013;29:166-71. https://doi.org/10.1016/j.yebeh.2013.07.010
  7. Rathouz PJ, Zhao Q, Jones JE, Jackson DC, Hsu DA, Stafstrom CE, et al. Cognitive development in children with new onset epilepsy. Dev Med Child Neurol 2014;56:635-41. https://doi.org/10.1111/dmcn.12432
  8. Levav M, Mirsky AF, Herault J, Xiong L, Amir N, Andermann E. Familial association of neuropsychological traits in patients with generalized and partial seizure disorders. J Clin Exp Neuropsychol 2002;24:311-26. https://doi.org/10.1076/jcen.24.3.311.985
  9. Pardoe HR, Berg AT, Archer JS, Fulbright RK, Jackson GD. A neurodevelopmental basis for BECTS: evidence from structural MRI. Epilepsy Res 2013;105:133-9. https://doi.org/10.1016/j.eplepsyres.2012.11.008
  10. Kim EH, Yum MS, Kim HW, Ko TS. Attention-deficit/hyperactivity disorder and attention impairment in children with benign childhood epilepsy with centrotemporal spikes. Epilepsy Behav 2014;37:54-8. https://doi.org/10.1016/j.yebeh.2014.05.030
  11. Kang SH, Yum MS, Kim EH, Kim HW, Ko TS. Cognitive function in childhood epilepsy: importance of attention deficit hyperactivity disorder. J Clin Neurol 2015;11:20-5. https://doi.org/10.3988/jcn.2015.11.1.20
  12. Berg AT, Langfitt JT, Testa FM, Levy SR, DiMario F, Westerveld M, et al. Global cognitive function in children with epilepsy: a community-based study. Epilepsia 2008;49:608-14. https://doi.org/10.1111/j.1528-1167.2007.01461.x
  13. Bhise VV, Burack GD, Mandelbaum DE. Baseline cognition, behavior, and motor skills in children with new-onset, idiopathic epilepsy. Dev Med Child Neurol 2010;52:22-6. https://doi.org/10.1111/j.1469-8749.2009.03404.x
  14. Deonna T, Zesiger P, Davidoff V, Maeder M, Mayor C, Roulet E. Benign partial epilepsy of childhood: a longitudinal neuropsychological and EEG study of cognitive function. Dev Med Child Neurol 2000;42:595-603. https://doi.org/10.1017/S0012162200001122
  15. Kwon S, Seo HE, Hwang SK. Cognitive and other neuropsychological profiles in children with newly diagnosed benign rolandic epilepsy. Korean J Pediatr 2012;55:383-7. https://doi.org/10.3345/kjp.2012.55.10.383
  16. Goldberg-Stern H, Gonen OM, Sadeh M, Kivity S, Shuper A, Inbar D. Neuropsychological aspects of benign childhood epilepsy with centrotemporal spikes. Seizure 2010;19:12-6. https://doi.org/10.1016/j.seizure.2009.10.004
  17. Smith AB, Kavros PM, Clarke T, Dorta NJ, Tremont G, Pal DK. A neurocognitive endophenotype associated with rolandic epilepsy. Epilepsia 2012;53:705-11. https://doi.org/10.1111/j.1528-1167.2011.03371.x
  18. Germanò E, Gagliano A, Magazù A, Sferro C, Calarese T, Mannarino E, et al. Benign childhood epilepsy with occipital paroxysms: neuropsychological findings. Epilepsy Res 2005;64:137-50. https://doi.org/10.1016/j.eplepsyres.2005.03.004
  19. Kim EH, Yum MS, Shim WH, Yoon HK, Lee YJ, Ko TS. Structural abnormalities in benign childhood epilepsy with centrotemporal spikes (BCECTS). Seizure 2015;27:40-6. https://doi.org/10.1016/j.seizure.2015.02.027
  20. Ciumas C, Saignavongs M, Ilski F, Herbillon V, Laurent A, Lothe A, et al. White matter development in children with benign childhood epilepsy with centro-temporal spikes. Brain 2014;137(Pt 4):1095-106. https://doi.org/10.1093/brain/awu039
  21. Hutchinson E, Pulsipher D, Dabbs K, Myers y Gutierrez A, Sheth R, Jones J, et al. Children with new-onset epilepsy exhibit diffusion abnormalities in cerebral white matter in the absence of volumetric differences. Epilepsy Res 2010;88:208-14. https://doi.org/10.1016/j.eplepsyres.2009.11.011
  22. Tosun D, Dabbs K, Caplan R, Siddarth P, Toga A, Seidenberg M, et al. Deformation-based morphometry of prospective neurodevelopmental changes in new onset paediatric epilepsy. Brain 2011; 134(Pt 4):1003-14. https://doi.org/10.1093/brain/awr027
  23. Pulsipher DT, Dabbs K, Tuchsherer V, Sheth RD, Koehn MA, Hermann BP, et al. Thalamofrontal neurodevelopment in new-onset pediatric idiopathic generalized epilepsy. Neurology 2011; 76:28-33. https://doi.org/10.1212/WNL.0b013e318203e8f3
  24. Ciumas C, Saignavongs M, Ilski F, Herbillon V, Laurent A, Lothe A, et al. White matter development in children with benign childhood epilepsy with centro-temporal spikes. Brain 2014;137(Pt 4):1095-106. https://doi.org/10.1093/brain/awu039
  25. Braakman HM, Ijff DM, Vaessen MJ, Debeij-van Hall MH, Hofman PA, Backes WH, et al. Cognitive and behavioural findings in children with frontal lobe epilepsy. Eur J Paediatr Neurol 2012; 16:707-15. https://doi.org/10.1016/j.ejpn.2012.05.003
  26. Laurent A, Arzimanoglou A. Cognitive impairments in children with nonidiopathic temporal lobe epilepsy. Epilepsia 2006;47 Suppl 2:99-102. https://doi.org/10.1111/j.1528-1167.2006.00703.x
  27. Rzezak P, Valente KD, Duchowny MS. Temporal lobe epilepsy in children: executive and mnestic impairments. Epilepsy Behav 2014;31:117-22. https://doi.org/10.1016/j.yebeh.2013.12.005
  28. Rzezak P, Fuentes D, Guimaraes CA, Thome-Souza S, Kuczynski E, Li LM, et al. Frontal lobe dysfunction in children with temporal lobe epilepsy. Pediatr Neurol 2007;37:176-85. https://doi.org/10.1016/j.pediatrneurol.2007.05.009
  29. Bien CG, Widman G, Urbach H, Sassen R, Kuczaty S, Wiestler OD, et al. The natural history of Rasmussen's encephalitis. Brain 2002;125(Pt 8):1751-9. https://doi.org/10.1093/brain/awf176
  30. Nabbout R. FIRES and IHHE: Delineation of the syndromes. Epilepsia 2013;54 Suppl 6:54-6. https://doi.org/10.1111/epi.12278
  31. Palmini A, Andermann F, Aicardi J, Dulac O, Chaves F, Ponsot G, et al. Diffuse cortical dysplasia, or the 'double cortex' syndrome: the clinical and epileptic spectrum in 10 patients. Neurology 1991; 41:1656-62. https://doi.org/10.1212/WNL.41.10.1656
  32. Korman B, Krsek P, Duchowny M, Maton B, Pacheco-Jacome E, Rey G. Early seizure onset and dysplastic lesion extent independently disrupt cognitive networks. Neurology 2013;81:745-51. https://doi.org/10.1212/WNL.0b013e3182a1aa2a
  33. Krsek P, Maton B, Korman B, Pacheco-Jacome E, Jayakar P, Dunoyer C, et al. Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann Neurol 2008;63:758-69. https://doi.org/10.1002/ana.21398
  34. Joinson C, O'Callaghan FJ, Osborne JP, Martyn C, Harris T, Bolton PF. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med 2003; 33:335-44. https://doi.org/10.1017/S0033291702007092
  35. van Eeghen AM, Black ME, Pulsifer MB, Kwiatkowski DJ, Thiele EA. Genotype and cognitive phenotype of patients with tuberous sclerosis complex. Eur J Hum Genet 2012;20:510-5. https://doi.org/10.1038/ejhg.2011.241
  36. Jozwiak S, Kotulska K, Domanska-Pakiela D, Lojszczyk B, Syczewska M, Chmielewski D, et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol 2011;15:424-31. https://doi.org/10.1016/j.ejpn.2011.03.010
  37. Henkin Y, Sadeh M, Kivity S, Shabtai E, Kishon-Rabin L, Gadoth N. Cognitive function in idiopathic generalized epilepsy of childhood. Dev Med Child Neurol 2005;47:126-32. https://doi.org/10.1017/S0012162205000228
  38. Loughman A, Bowden SC, D'Souza W. Cognitive functioning in idiopathic generalised epilepsies: a systematic review and meta-analysis. Neurosci Biobehav Rev 2014;43:20-34. https://doi.org/10.1016/j.neubiorev.2014.02.012
  39. Darra F, Fiorini E, Zoccante L, Mastella L, Torniero C, Cortese S, et al. Benign myoclonic epilepsy in infancy (BMEI): a longitudinal electroclinical study of 22 cases. Epilepsia 2006;47 Suppl 5:31-5.
  40. Trivisano M, Specchio N, Cappelletti S, Di Ciommo V, Claps D, Specchio LM, et al. Myoclonic astatic epilepsy: an age-dependent epileptic syndrome with favorable seizure outcome but variable cognitive evolution. Epilepsy Res 2011;97:133-41. https://doi.org/10.1016/j.eplepsyres.2011.07.021
  41. Caplan R, Siddarth P, Stahl L, Lanphier E, Vona P, Gurbani S, et al. Childhood absence epilepsy: behavioral, cognitive, and linguistic comorbidities. Epilepsia 2008;49:1838-46. https://doi.org/10.1111/j.1528-1167.2008.01680.x
  42. Masur D, Shinnar S, Cnaan A, Shinnar RC, Clark P, Wang J, et al. Pretreatment cognitive deficits and treatment effects on attention in childhood absence epilepsy. Neurology 2013;81:1572-80. https://doi.org/10.1212/WNL.0b013e3182a9f3ca
  43. Pascalicchio TF, de Araujo Filho GM, da Silva Noffs MH, Lin K, Caboclo LO, Vidal-Dourado M, et al. Neuropsychological profile of patients with juvenile myoclonic epilepsy: a controlled study of 50 patients. Epilepsy Behav 2007;10:263-7. https://doi.org/10.1016/j.yebeh.2006.11.012
  44. Roebling R, Scheerer N, Uttner I, Gruber O, Kraft E, Lerche H. Evaluation of cognition, structural, and functional MRI in juvenile myoclonic epilepsy. Epilepsia 2009;50:2456-65. https://doi.org/10.1111/j.1528-1167.2009.02127.x
  45. Pardoe H, Pell GS, Abbott DF, Berg AT, Jackson GD. Multi-site voxel -based morphometry: methods and a feasibility demonstration with childhood absence epilepsy. Neuroimage 2008;42:611-6. https://doi.org/10.1016/j.neuroimage.2008.05.007
  46. Pulsipher DT, Seidenberg M, Guidotti L, Tuchscherer VN, Morton J, Sheth RD, et al. Thalamofrontal circuitry and executive dysfunction in recent-onset juvenile myoclonic epilepsy. Epilepsia 2009;50:1210-9. https://doi.org/10.1111/j.1528-1167.2008.01952.x
  47. Djukic A, Lado FA, Shinnar S, Moshe SL. Are early myoclonic encephalopathy (EME) and the Ohtahara syndrome (EIEE) independent of each other? Epilepsy Res 2006;70 Suppl 1:S68-76. https://doi.org/10.1016/j.eplepsyres.2005.11.022
  48. Riikonen R. Long-term outcome of patients with West syndrome. Brain Dev 2001;23:683-7. https://doi.org/10.1016/S0387-7604(01)00307-2
  49. Kivity S, Lerman P, Ariel R, Danziger Y, Mimouni M, Shinnar S. Long-term cognitive outcomes of a cohort of children with cryptogenic infantile spasms treated with high-dose adrenocorticotropic hormone. Epilepsia 2004;45:255-62. https://doi.org/10.1111/j.0013-9580.2004.30503.x
  50. Riikonen RS. Favourable prognostic factors with infantile spasms. Eur J Paediatr Neurol 2010;14:13-8. https://doi.org/10.1016/j.ejpn.2009.03.004
  51. Scheffer IE, Zhang YH, Jansen FE, Dibbens L. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev 2009;31:394-400. https://doi.org/10.1016/j.braindev.2009.01.001
  52. Blume WT. Pathogenesis of Lennox-Gastaut syndrome: considerations and hypotheses. Epileptic Disord 2001;3:183-96.
  53. Blume WT. Lennox-Gastaut syndrome: potential mechanisms of cognitive regression. Ment Retard Dev Disabil Res Rev 2004;10: 150-3. https://doi.org/10.1002/mrdd.20029
  54. Lin H, Holmes GL, Kubie JL, Muller RU. Recurrent seizures induce a reversible impairment in a spatial hidden goal task. Hippocampus 2009;19:817-27. https://doi.org/10.1002/hipo.20565
  55. Badawy R, Macdonell R, Jackson G, Berkovic S. The peri-ictal state: cortical excitability changes within 24 h of a seizure. Brain 2009;132(Pt 4):1013-21. https://doi.org/10.1093/brain/awp017
  56. Braakman HM, Vaessen MJ, Hofman PA, Debeij-van Hall MH, Backes WH, Vles JS, et al. Cognitive and behavioral complications of frontal lobe epilepsy in children: a review of the literature. Epilepsia 2011;52:849-56. https://doi.org/10.1111/j.1528-1167.2011.03057.x
  57. Hermann B, Jones J, Sheth R, Dow C, Koehn M, Seidenberg M. Children with new-onset epilepsy: neuropsychological status and brain structure. Brain 2006;129(Pt 10):2609-19. https://doi.org/10.1093/brain/awl196
  58. Hermann BP, Wyler AR, Richey ET. Wisconsin Card Sorting Test performance in patients with complex partial seizures of temporal-lobe origin. J Clin Exp Neuropsychol 1988;10:467-76. https://doi.org/10.1080/01688638808408253
  59. Berg AT, Smith SN, Frobish D, Beckerman B, Levy SR, Testa FM, et al. Longitudinal assessment of adaptive behavior in infants and young children with newly diagnosed epilepsy: influences of etiology, syndrome, and seizure control. Pediatrics 2004;114:645-50. https://doi.org/10.1542/peds.2003-1151-L
  60. Mandelbaum DE, Burack GD. The effect of seizure type and medication on cognitive and behavioral functioning in children with idiopathic epilepsy. Dev Med Child Neurol 1997;39:731-5.
  61. Hermann B, Seidenberg M, Jones J. The neurobehavioural comorbidities of epilepsy: can a natural history be developed? Lancet Neurol 2008;7:151-60. https://doi.org/10.1016/S1474-4422(08)70018-8
  62. O'Callaghan FJ, Lux AL, Darke K, Edwards SW, Hancock E, Johnson AL, et al. The effect of lead time to treatment and of age of onset on developmental outcome at 4 years in infantile spasms: evidence from the United Kingdom Infantile Spasms Study. Epilepsia 2011;52:1359-64. https://doi.org/10.1111/j.1528-1167.2011.03127.x
  63. Berg AT, Loddenkemper T, Baca CB. Diagnostic delays in children with early onset epilepsy: impact, reasons, and opportunities to improve care. Epilepsia 2014;55:123-32. https://doi.org/10.1111/epi.12479
  64. Aldenkamp AP, Arends J. Effects of epileptiform EEG discharges on cognitive function: is the concept of "transient cognitive impairment" still valid? Epilepsy Behav 2004;5 Suppl 1:S25-34.
  65. Binnie CD. Cognitive impairment during epileptiform discharges: is it ever justifiable to treat the EEG? Lancet Neurol 2003;2:725-30. https://doi.org/10.1016/S1474-4422(03)00584-2
  66. Fonseca LC, Tedrus GM, Pacheco EM. Epileptiform EEG discharges in benign childhood epilepsy with centrotemporal spikes: reactivity and transitory cognitive impairment. Epilepsy Behav 2007;11:65-70. https://doi.org/10.1016/j.yebeh.2007.04.001
  67. Ijff DM, Aldenkamp AP. Cognitive side-effects of antiepileptic drugs in children. Handb Clin Neurol 2013;111:707-18.
  68. Loring DW, Meador KJ. Cognitive side effects of antiepileptic drugs in children. Neurology 2004;62:872-7. https://doi.org/10.1212/01.WNL.0000115653.82763.07
  69. Mikati MA, Holmes GL, Chronopoulos A, Hyde P, Thurber S, Gatt A, et al. Phenobarbital modifies seizure-related brain injury in the developing brain. Ann Neurol 1994;36:425-33. https://doi.org/10.1002/ana.410360314
  70. Vining EP, Mellitis ED, Dorsen MM, Cataldo MF, Quaskey SA, Spielberg SP, et al. Psychologic and behavioral effects of antiepileptic drugs in children: a double-blind comparison between phenobarbital and valproic acid. Pediatrics 1987;80:165-74.
  71. Camfield CS, Chaplin S, Doyle AB, Shapiro SH, Cummings C, Camfield PR. Side effects of phenobarbital in toddlers; behavioral and cognitive aspects. J Pediatr 1979;95:361-5. https://doi.org/10.1016/S0022-3476(79)80507-7
  72. Mandelbaum DE, Burack GD, Bhise VV. Impact of antiepileptic drugs on cognition, behavior, and motor skills in children with new-onset, idiopathic epilepsy. Epilepsy Behav 2009;16:341-4. https://doi.org/10.1016/j.yebeh.2009.08.002
  73. Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 2010;362:790-9. https://doi.org/10.1056/NEJMoa0902014
  74. Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord 2011;4:385-407. https://doi.org/10.1177/1756285611417920
  75. Kang HC, Eun BL, Wu Lee C, Ku Moon H, Kim JS, Wook Kim D, et al. The effects on cognitive function and behavioral problems of topiramate compared to carbamazepine as monotherapy for children with benign rolandic epilepsy. Epilepsia 2007;48:1716-23. https://doi.org/10.1111/j.1528-1167.2007.01160.x
  76. Pandina GJ, Ness S, Polverejan E, Yuen E, Eerdekens M, Bilder RM, et al. Cognitive effects of topiramate in migraine patients aged 12 through 17 years. Pediatr Neurol 2010;42:187-95. https://doi.org/10.1016/j.pediatrneurol.2009.10.001
  77. Meador KJ, Loring DW, Vahle VJ, Ray PG, Werz MA, Fessler AJ, et al. Cognitive and behavioral effects of lamotrigine and topiramate in healthy volunteers. Neurology 2005;64:2108-14. https://doi.org/10.1212/01.WNL.0000165994.46777.BE
  78. Bawden HN, Camfield CS, Camfield PR, Cunningham C, Darwish H, Dooley JM, et al. The cognitive and behavioural effects of clobazam and standard monotherapy are comparable. Canadian Study Group for Childhood Epilepsy. Epilepsy Res 1999;33:133-43. https://doi.org/10.1016/S0920-1211(98)00088-6
  79. Meador KJ, Gevins A, Loring DW, McEvoy LK, Ray PG, Smith ME, et al. Neuropsychological and neurophysiologic effects of carbamazepine and levetiracetam. Neurology 2007;69:2076-84. https://doi.org/10.1212/01.wnl.0000281104.55418.60
  80. Helmstaedter C, Witt JA. Cognitive outcome of antiepileptic treatment with levetiracetam versus carbamazepine monotherapy: a non-interventional surveillance trial. Epilepsy Behav 2010;18:74-80. https://doi.org/10.1016/j.yebeh.2010.02.011
  81. Jung da E, Yu R, Yoon JR, Eun BL, Kwon SH, Lee YJ, et al. Neuropsychological effects of levetiracetam and carbamazepine in children with focal epilepsy. Neurology 2015;84:2312-9. https://doi.org/10.1212/WNL.0000000000001661
  82. de la Loge C, Hunter SJ, Schiemann J, Yang H. Assessment of behavioral and emotional functioning using standardized instruments in children and adolescents with partial-onset seizures treated with adjunctive levetiracetam in a randomized, placebo-controlled trial. Epilepsy Behav 2010;18:291-8. https://doi.org/10.1016/j.yebeh.2010.04.017
  83. Donati F, Gobbi G, Campistol J, Rapatz G, Daehler M, Sturm Y, et al. The cognitive effects of oxcarbazepine versus carbamazepine or valproate in newly diagnosed children with partial seizures. Seizure 2007;16:670-9. https://doi.org/10.1016/j.seizure.2007.05.006
  84. Park SP, Hwang YH, Lee HW, Suh CK, Kwon SH, Lee BI. Long-term cognitive and mood effects of zonisamide monotherapy in epilepsy patients. Epilepsy Behav 2008;12:102-8. https://doi.org/10.1016/j.yebeh.2007.08.002
  85. Kalviainen R, Aikia M, Partanen J, Sivenius J, Mumford J, Saksa M, et al. Randomized controlled pilot study of vigabatrin versus carbamazepine monotherapy in newly diagnosed patients with epilepsy: an interim report. J Child Neurol 1991;Suppl 2:S60-9.
  86. Salinsky MC, Storzbach D, Spencer DC, Oken BS, Landry T, Dodrill CB. Effects of topiramate and gabapentin on cognitive abilities in healthy volunteers. Neurology 2005;64:792-8. https://doi.org/10.1212/01.WNL.0000152877.08088.87
  87. Aldenkamp AP, Alpherts WC. The effect of the new antiepileptic drug rufinamide on cognitive functions. Epilepsia 2006;47:1153-9. https://doi.org/10.1111/j.1528-1167.2006.00589.x
  88. Helmstaedter C, Witt JA. The longer-term cognitive effects of adjunctive antiepileptic treatment with lacosamide in comparison with lamotrigine and topiramate in a naturalistic outpatient setting. Epilepsy Behav 2013;26:182-7. https://doi.org/10.1016/j.yebeh.2012.11.052
  89. Wells PG, Zubovits JT, Wong ST, Molinari LM, Ali S. Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid, and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase. Toxicol Appl Pharmacol 1989;97:192-202. https://doi.org/10.1016/0041-008X(89)90325-6
  90. Danielsson B, Skold AC, Azarbayjani F, Ohman I, Webster W. Pharmacokinetic data support pharmacologically induced embryonic dysrhythmia as explanation to Fetal Hydantoin Syndrome in rats. Toxicol Appl Pharmacol 2000;163:164-75. https://doi.org/10.1006/taap.1999.8858
  91. Carl GF, Smith ML. Chronic primidone treatment in the rat: an animal model of primidone therapy. Res Commun Chem Pathol Pharmacol 1988;61:365-76.
  92. Carl GF, Smith ML. Chronic carbamazepine treatment in the rat: efficacy, toxicity, and effect on plasma and tissue folate concentrations. Epilepsia 1989;30:217-24. https://doi.org/10.1111/j.1528-1157.1989.tb05457.x
  93. Carl GF, Deloach C, Patterson J. Chronic sodium valproate treatment in the rat: toxicity versus protection against seizures induced by indoklon. Neurochem Int 1986;8:41-5. https://doi.org/10.1016/0197-0186(86)90098-7
  94. Stefovska VG, Uckermann O, Czuczwar M, Smitka M, Czuczwar P, Kis J, et al. Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Ann Neurol 2008;64:434-45. https://doi.org/10.1002/ana.21463
  95. Katz I, Kim J, Gale K, Kondratyev A. Effects of lamotrigine alone and in combination with MK-801, phenobarbital, or phenytoin on cell death in the neonatal rat brain. J Pharmacol Exp Ther 2007; 322:494-500. https://doi.org/10.1124/jpet.107.123133
  96. Kim J, Kondratyev A, Gale K. Antiepileptic drug-induced neuronal cell death in the immature brain: effects of carbamazepine, topiramate, and levetiracetam as monotherapy versus polytherapy. J Pharmacol Exp Ther 2007;323:165-73. https://doi.org/10.1124/jpet.107.126250
  97. Meador KJ. Can we treat cognitive deficits in patients with epilepsy? Epilepsy Behav 2001;2:307-8. https://doi.org/10.1006/ebeh.2001.0225
  98. Chen HH, Chen C, Hung SC, Liang SY, Lin SC, Hsu TR, et al. Cognitive and epilepsy outcomes after epilepsy surgery caused by focal cortical dysplasia in children: early intervention maybe better. Childs Nerv Syst 2014;30:1885-95. https://doi.org/10.1007/s00381-014-2463-y
  99. Ramantani G, Kadish NE, Strobl K, Brandt A, Stathi A, Mayer H, et al. Seizure and cognitive outcomes of epilepsy surgery in infancy and early childhood. Eur J Paediatr Neurol 2013;17:498-506. https://doi.org/10.1016/j.ejpn.2013.03.009
  100. Guerrini R. Epilepsy in children. Lancet 2006;367:499-524. https://doi.org/10.1016/S0140-6736(06)68182-8

피인용 문헌

  1. APC conditional knock-out mouse is a model of infantile spasms with elevated neuronal β-catenin levels, neonatal spasms, and chronic seizures vol.98, pp.None, 2017, https://doi.org/10.1016/j.nbd.2016.11.002
  2. Embelin Protects Against Acute Pentylenetetrazole-Induced Seizures and Positively Modulates Cognitive Function in Adult Zebrafish vol.10, pp.None, 2016, https://doi.org/10.3389/fphar.2019.01249
  3. Analysis of EEG networks and their correlation with cognitive impairment in preschool children with epilepsy vol.90, pp.None, 2019, https://doi.org/10.1016/j.yebeh.2018.11.011
  4. A new approach for assessing executive functions in everyday life, among adolescents with Genetic Generalised Epilepsies vol.30, pp.2, 2020, https://doi.org/10.1080/09602011.2018.1468272
  5. Prognostic role of Mini-Mental State Pediatric Examination (MMSPE) on neuropsychological functioning vol.41, pp.3, 2016, https://doi.org/10.1007/s10072-019-04141-6
  6. Active avoidance learning in WAG/Rij rats with genetic predisposition to absence epilepsy vol.165, pp.None, 2020, https://doi.org/10.1016/j.brainresbull.2020.10.007
  7. Multiple-brain systems dynamically interact during tonic and phasic states to support language integrity in temporal lobe epilepsy vol.32, pp.None, 2016, https://doi.org/10.1016/j.nicl.2021.102861
  8. Results of the expert forum on the use of perampanel in adolescents with epilepsy in everyday clinical practice vol.12, pp.4, 2016, https://doi.org/10.17749/2077-8333/epi.par.con.2020.054
  9. Association of epileptiform brain activity and specific language impairment (SLI) in preschool children vol.57, pp.1, 2021, https://doi.org/10.1186/s41983-021-00269-5
  10. The interictal activities load and cognitive performance of children with typical absence epilepsy vol.57, pp.1, 2021, https://doi.org/10.1186/s41983-021-00299-z
  11. Probabilistic mapping of thalamic nuclei and thalamocortical functional connectivity in idiopathic generalised epilepsy vol.42, pp.17, 2021, https://doi.org/10.1002/hbm.25644
  12. Cognitive profile, psychopathological symptoms, and quality of life in newly diagnosed pediatric epilepsy: A six-month, naturalistic follow-up study vol.179, pp.None, 2022, https://doi.org/10.1016/j.eplepsyres.2021.106844