DOI QR코드

DOI QR Code

Precursor Events in Environmentally Assisted Cracking Behaviour of Light Metals

  • Raja, V.S. (Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay)
  • Received : 2016.01.28
  • Accepted : 2016.05.25
  • Published : 2016.08.31

Abstract

Light metal alloys of Mg, Ti, and Al undergo environmentally assisted cracking (EAC). Passive film breakdown and pitting are not only precursor events for stress corrosion, but can accelerate hydrogen evolution that is responsible for hydrogen embrittlement. This is clearly demonstrated in the case of Mg and Ti alloys. The so-called innocuous precipitates, which do not directly participate in either alloy strengthening or EAC can be effective precursors for initiating EAC. This aspect is highlighted using high strength aluminium alloys. Such behaviours lead to a paradigm shift in the design of alloys with resistance to EAC.

Keywords

References

  1. S. P. Lynch, Stress corrosion cracking theory and practice, (eds. V. S. Raja and T. Shoji), p.1, Woodhead Publishing Limited, UK (2011).
  2. S. P. Lynch, Stress corrosion cracking theory and practice, (eds. V. S. Raja and T. Shoji), p. 90, Woodhead Publishing Limited, UK (2011).
  3. V. S. Raja, B. S. Padekar, Corros. Sci., 71, 176 (2013).
  4. N. Winzer, A. Atrens, G. Song, E. Ghali, W. Dietzel, K. U. Kainer, N. Hort, C. Blawert, Adv. Eng. Mater., 7, 659 (2005). https://doi.org/10.1002/adem.200500071
  5. B. S. Padekar, R. K. S. Raman, V. S. Raja, L. Paul, Corros. Sci., 71, 1 (2013). https://doi.org/10.1016/j.corsci.2013.01.001
  6. N. Winzer, A. Atrens, W. Dietzel, G. Song, K. U. Kainer, Mater. Sci. Eng. A, 472, 97 (2008). https://doi.org/10.1016/j.msea.2007.03.021
  7. R. G. Song, C. Blawert, W. Dietzel, A. Atrens, Mater. Sci. Eng. A, 399, 308 (2005). https://doi.org/10.1016/j.msea.2005.04.003
  8. N. Winzer, A. Atrens, W. Dietzel, G. Song, K. U. Kainer, Mater. Sci. Eng. A, 466, 18 (2007). https://doi.org/10.1016/j.msea.2007.03.020
  9. B. S. Padekar, V. S. Raja, R. K. S. Raman, L. Paul, Mater. Sci. Forum, 690, 361 (2011).
  10. M. A. Timonova, In: I. A. Levin, ed., Intercrystalline corrosion and corrosion of metals under stress, Great Britain (1962).
  11. R. S. Stampella, R. P. M. Procter, V. Ashworth, Corros. Sci., 24, 325 (1984). https://doi.org/10.1016/0010-938X(84)90017-9
  12. V. C. Petersen, J. Metals, 23, 40 (1971).
  13. ASTM STP 397, S. P. Rideout, M. R. Louthan, Jr., C.L. Selby, p. 137 (1966).
  14. R. G. Lingwall, E. J. Ripling, NASA Technical note CR-88979 (1967).
  15. M. Garfinkle, Metal. Trans., 4, 1677 (1973). https://doi.org/10.1007/BF02666196
  16. ASTM STP 397, V. C. Petersen, H. B. Bomberger, p. 80 (1966).
  17. R. S. Ondrejcin, Metal. Trans., 1, 3031 (1970).
  18. ASTM STP 397, A. J. Hatch, H. W. Rosenberg, E. F. Erbin, p. 122 (1966).
  19. R. S. Ondrejcin, C. L. Selby, S. P. Rideout, NASA Technical note CR-87817 (1967).
  20. M. Encrenaz, P. Faure, J. A. Petit, Corros. Sci., 40, 939 (1998). https://doi.org/10.1016/S0010-938X(98)00028-6
  21. R. K. Dinnappa, Key Eng. Mat., 20-28, 2255 (1988).
  22. ASTM STP 397, R. V. Turley, C. H. Avery, p. 1 (1966).
  23. M. W. Mahoney, A. S. Tetelman, Metal. Trans., 7A, 1549 (1976).
  24. M. D. Pustode, B. Dewangan, V. S. Raja, N. Paulose, Mater. Sci. Eng. A (Communicated).
  25. T. Chevrot, Ph. D. Thesis, Cranfield University (1994).
  26. M. D. Pustode, V. S. Raja, N. Paulose, Corros. Sci., 82, 191 (2014). https://doi.org/10.1016/j.corsci.2014.01.013
  27. D. Najjar, T. Magnin, T. J. Warner, Mater. Sci. Eng. A, 238, 293 (1997). https://doi.org/10.1016/S0921-5093(97)00369-9
  28. M. Bobby Kannan, V. S. Raja, J. Mater. Sci., 201, 5458 (2007).

Cited by

  1. Nanoscale Precursor Sites and their Importance in the Prediction of Stress Corrosion Cracking Failure vol.75, pp.3, 2019, https://doi.org/10.5006/2928