DOI QR코드

DOI QR Code

프로젝션 기법을 활용한 위상 최적설계

Topology Design Optimization using Projection Method

  • 하승현 (한국해양대학교 해양공학과)
  • Ha, Seung-Hyun (Department of Ocean Engineering, Korea Maritime and Ocean University)
  • 투고 : 2015.10.11
  • 심사 : 2016.07.19
  • 발행 : 2016.08.31

초록

본 논문은 확장된 프로젝션 기법을 사용한 위상 최적설계 방법을 다루고 있다. 다양한 형상과 길이 스케일을 가지는 프로젝션 함수를 개발해 위상 최적설계 기법에 적용시킴으로써, 복합재료의 설계에서 형상 및 크기가 미리 주어진 보강재의 최적 배치를 위상 최적설계를 통해 결정할 수 있음을 확인하였다. 또한 이와 같은 프로젝션 기법이 균질화법과 결합되어 체적탄성률 또는 전단탄성률 등의 유효 재료특성을 최대화시키는 단위 구조를 설계함으로써, 주기 구조를 가지는 복합재료에서 보강재의 최적 배치를 결정하고 그 유효 재료특성값을 수치적으로 계산할 수 있음을 여러 수치 예제들을 통해서 검증하였다.

In this paper, a projection method is introduced which is used in topology design optimization. In the projection method, each active design variable is projected onto the design domain depending on the shape and size of the projection functions, and the finite element under this projection receives a solid material. Furthermore, the size of the projection function defines the minimum length scale of the structural members. Therefore, a designer can easily apply design constraints without complicated post-processing procedure. In addition, the projection method can be combined with the homogenization theory, and applied to material design problem for composite materials. Topology design optimization for the unit-cell of the periodic structures can maximize the effective material properties, which yields the optimal material distribution with maximum bulk or shear moduli under a given volume fraction.

키워드

참고문헌

  1. Bendsoe, M.P., Kikuchi, N. (1998) Generating Optimal Topologies in Structural Design using a Homogenization Method, Comput. Methods Appl. Mech. & Eng., 71, pp.197-224.
  2. Cha, S.-H., Lee, S.-W., Cho, S. (2013) Experimental Validation of Topology Design Optimization, J. Comput. Struct. Eng., 26(4), pp.241-246.
  3. Guedes, J., Kikuchi, N. (1990) Preprocessing and Postprocessing for Materials based on the Homogenization Method with Adaptive Finite Element Methods, Comput. Methods Appl. Mech. & Eng., 83, pp.143-198. https://doi.org/10.1016/0045-7825(90)90148-F
  4. Guest, J.K. (2015) Optimizing the layout of Discrete Objects in Structures and Materials: A Projectionbased Topology Optimization Approach, Comput. Methods Appl. Mech. & Eng., 283, pp.330-351. https://doi.org/10.1016/j.cma.2014.09.006
  5. Guest, J.K., Asadpoure, A., Ha, S.-H. (2011) Eliminating Beta-Continuation from Heaviside Projection and Density Filter Algorithms, Struct. & Multidiscipl. Optim., 44(4), pp.443-453. https://doi.org/10.1007/s00158-011-0676-1
  6. Guest, J.K., Prevost, J.H., Belytschko, T. (2004) Achieving Minimum Length Scale in Topology Optimization using Nodal Design Variables and Projection Functions, Int. J. Numer. Methods Eng., 61, pp.238-254. https://doi.org/10.1002/nme.1064
  7. Ha, S.-H., Guest, J.K. (2014) Optimizing Inclusion Shapes and Paterns Inperiodic Materials using Discrete Object Projection, Struct. & Multidiscipl. Optim., 50(1), pp.65-80. https://doi.org/10.1007/s00158-013-1026-2
  8. Hassani, B., Hinton, E. (1998) A Review of Homogenization and Topology Optimization II-Analytical and Numerical Solution of Homogenization Equations, Comput. & Struct., 69, pp.719-738. https://doi.org/10.1016/S0045-7949(98)00132-1
  9. Sigmund, O. (1994) Materials with Prescribed Constitutive Parameters: an Inverse Homogenization Problem, Int. J. Solids & Struct., 31, pp.2313-2329. https://doi.org/10.1016/0020-7683(94)90154-6
  10. Sigmund, O. (2001) A 99 line Topology Optimization Code Written in Mathlab, Struct. & Multidiscipl. Optimi., 21, pp.120-127. https://doi.org/10.1007/s001580050176
  11. Sigmund, O. (2007) Morphology-based Black and White Filters for Topology Optimization, Struct. & Multidiscipl. Optimi., 33, pp.401-424. https://doi.org/10.1007/s00158-006-0087-x
  12. Sigmund, O., Peterson, J. (1998) Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing with Checkerboards, Meshdependencies and Local Minima, Struct. Optimi., 16, pp.68-75. https://doi.org/10.1007/BF01214002
  13. Svanberg, K. (1987) The Method of Moving Asymptotesa New Method for Structural Optimization, J. Numer. Methods Eng., 24, pp.359-373. https://doi.org/10.1002/nme.1620240207