DOI QR코드

DOI QR Code

터보등화를 이용한 직접대역확산통신 기반의 은밀 수중통신 성능분석

Turbo Equalization for Covert communication in Underwater Channel

  • Ahn, Tae-Seok (Department of Radio Communication Engineering, Korea Maritime and Ocean University) ;
  • Jung, Ji-Won (Department of Radio Communication Engineering, Korea Maritime and Ocean University) ;
  • Park, Tae-Doo (Hanwha Corporation Gumi Plant (Development Team3)) ;
  • Lee, Dong-Won (Hanwha Corporation Gumi Plant (Development Team3))
  • 투고 : 2016.03.30
  • 심사 : 2016.05.03
  • 발행 : 2016.08.31

초록

전송되는 정보들의 가로채기 확률을 감소시키기 위한 피감청 기술 중 대표적인 대역확산통신 기법을 적용함으로써 통신 성능에 미치는 영향을 분석하고, 이를 통해 최적의 은밀 수중음향통신 시스템의 모델을 제안한다. 대역확산 통신 된 신호의 레벨이 낮아져 주변의 배경소음과 같은 레벨로 전송하기 때문에 피탐지 확률이 감소하고 은밀성의 특징을 갖게 된다. 본 논문에서는 BCJR(Bahl, Cocke, Jelinek, Raviv) 복호방법과 대역 확산 기법 중 직접 수열 대역 확산 기법을 적용하였으며, 은밀 수중 통신에서 고려되는 송수신 모델은 크게 두 가지로 나뉘는데, 경판정 기반의 송수신 모델과 반복기반의 터보 등화 모델의 성능을 시뮬레이션과 호수 실험을 통해 성능을 비교 분석하였다.

Researches for oceans are limited to military purpose such as underwater sound detection and tracking system. Underwater acoustic communications with low-probability-of-interception (LPI) covert characteristics were received much attention recently. Covert communications are conducted at a low received signal-to-noise ratio to prevent interception or detection by an eavesdropper. This paper proposed optimal covert communication model based on direct sequence spread spectrum for underwater environments. Spread spectrum signals may be used for data transmission on underwater acoustic channels to achieve reliable transmission by suppressing the detrimental effect of interference and self-interference due to jamming and multipath propagation. The characteristics of the underwater acoustic channel present special problems in the design of covert communication systems. To improve performance and probability of interception, we applied BCJR(Bahl, Cocke, Jelinek, Raviv) decoding method and the direct sequence spread spectrum technology in low SNR. Also, we compared the performance between conventional model and proposed model based on turbo equalization by simulation and lake experiment.

키워드

참고문헌

  1. J. H. Park Jr, "LPI TECHNIQUES IN THE UNDERWATER ACOUSTIC CHANNEL," IEEE Military Communication conference, vol. 1, pp. 10.5.1-10.5.5, Oct. 1986.
  2. E. M. Sozer, J. G. Proakis, M. Stojanovic, J. A. Rice, A. Benson and M. Hatch, "Direct Sequence Spread Spectrum Based Modem for Under Water Acoustic Communication and Channel Measurements," IEEE. Oceans'99 MTS, vol. 1, pp. 228-233, Sep. 1999.
  3. G. D. Weeks, J. K. Townsend and J. A. Freebersyser, "A Method and Metric for Quantitatively Defining Low Probability of Detection," Proceeding of IEEE Military Communication Conference, vol. 3, pp. 812-826, Oct. 1998.
  4. T. C. Yang and W. B. Yang, "Low signal-to-noise-ratio underwater acoustic communication using direct-sequence spread spectrum signals," IEEE Oceans 2007, pp. 821-826, Jun. 2007.
  5. M. Stojanovic, J. G. Proakis, J. A. Rice and M. D. Green, "Spread Spectrum Underwater Acoustic Telemetry," IEEE OCEANS '98 Conference Proceedings, vol. 50, pp. 650-654, Oct. 1988.
  6. M. Tuchler, R. Koetter, and A. C. Singer, "Turbo Equalization: principles and new results," IEEE Trans CommunicationsIEEE, vol. 2, pp. 754-767, Oct. 2002.
  7. R. Koetter, A. C. Singer and M. Tuchler, "Turbo Equalization," IEEE Signal Processing Magazine, pp. 67-80, Oct. 2004.
  8. L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, "Optimal decoding of linear codes for minimizing sysbol error rate," IEEE Transactions on Information Theory, vol. 20, pp. 284-287, Mar. 1974.
  9. K. Berberdis, T. Rontogiannis and S. Theodoridis, "Efficient block implementation of the LMS based DFE," Proc. 13th Digital Signal Processing Int. Conf., vol. 1, pp. 284-287, Mar. 1974.

피인용 문헌

  1. Spread-Spectrum Techniques for Bio-Friendly Underwater Acoustic Communications vol.6, pp.2169-3536, 2018, https://doi.org/10.1109/ACCESS.2018.2790478