DOI QR코드

DOI QR Code

Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents

  • Tavakolmoghadam, Maryam (Research and Technology Centre for Membrane Processes, Faculty of Chemical Engineering, Iran University of Science and Technology) ;
  • Mohammadi, Toraj (Research and Technology Centre for Membrane Processes, Faculty of Chemical Engineering, Iran University of Science and Technology) ;
  • Hemmati, Mahmood (Research Institute of Petroleum Industry)
  • Received : 2014.10.18
  • Accepted : 2016.04.26
  • Published : 2016.09.25

Abstract

To study the effect of titanium dioxide ($TiO_2$) nanoparticles on membrane performance and structure and to explore possible improvement of using mixed solvents in the casting solution, composite polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc) and addition of $TiO_2$ nanoparticles. Properties of the neat and composite membranes were characterized using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Atomic force microscopy (AFM) and contact angle and membrane porosity measurements. The neat and composite membranes were further investigated in terms of BSA rejection and flux decline in cross flow filtration experiments. Following hydrophilicity improvement of the PVDF membrane by addition of 0.25 wt.% $TiO_2$, (from $70.53^{\circ}$ to $60.5^{\circ}$) degree of flux decline due to irreversible fouling resistance of the composite membrane reduced significantly and the flux recovery ratio (FRR) of 96.85% was obtained. The results showed that using mixed solvents (DMAc/TEP) with lower content of $TiO_2$ nanoparticles (0.25 wt.%) affected the sedimentation rate of nanoparticles and consequently the distribution of nanoparticles in the casting solution and membrane formation which influenced the properties of the ultimate composite membranes.

Keywords

References

  1. Arsuaga, J.M., Sotto, A., Rosario, G., Martinez, A., Molina, S., Teli, S.B. and Abajo, J.d. (2013), "Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes", J. Membr. Sci., 428, 131-141. https://doi.org/10.1016/j.memsci.2012.11.008
  2. Bae, T.-H. and Tak, T.-M. (2005), "Effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 249(1-2), 1-8. https://doi.org/10.1016/j.memsci.2004.09.008
  3. Bian, X., Shi, L., Yang, X. and Lu, X. (2011), "Effect of nano-$TiO_2$ particles on the performance of PVDF, PVDF-g-(Maleic anhydride), and PVDF-g-Poly(acryl amide) membranes", Ind. Eng. Chem. Res., 50(21), 12113-12123. https://doi.org/10.1021/ie200232u
  4. Bottino, A., Capannelli, G., Munari, S. and Turturro, A. (1988), "Solubility parameters of poly(vinylidene fluoride)", J. Polym. Sci., Part B: Polym. Phys., 26(4), 785-794. https://doi.org/10.1002/polb.1988.090260405
  5. Bottino, A., Camera-Roda, G., Capannelli, G. and Munari, S. (1991), "The formation of microporous polyvinylidene difluoride membranes by phase separation", J. Membr. Sci., 57(1), 1-20. https://doi.org/10.1016/S0376-7388(00)81159-X
  6. Cao, X., Ma, J., Shi, X. and Ren, Z. (2006), "Effect of $TiO_2$ nanoparticle size on the performance of PVDF membrane", Appl. Surf. Sci., 253(4), 2003-2010. https://doi.org/10.1016/j.apsusc.2006.03.090
  7. Damodar, R.A., You, S.-J. and Chou, H.H. (2009), "Study the self-cleaning, antibacterial and photocatalytic properties of $TiO_2$ entrapped PVDF membranes", J. Hazard. Mater., 172(2-3), 1321-1328. https://doi.org/10.1016/j.jhazmat.2009.07.139
  8. Damodar, R.-A., You, S.-J. and Chiou, G.-W. (2012), "Investigation on the conditions mitigating membrane fouling caused by $TiO_2$ deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment", J. Hazard. Mater., 203-204, 348-356. https://doi.org/10.1016/j.jhazmat.2011.12.027
  9. Guillen, G.R., Pan, Y., Li, M. and Hoek, E.M.V. (2011), "Preparation and Characterization of Membranes Formed by Non-solvent Induced Phase Separation: A Review", Ind. Eng. Chem. Res., 50(7), 3798-3817. https://doi.org/10.1021/ie101928r
  10. Kesting, R.E. (1985), Synthetic Polymeric Membranes: A Structural Perspective, John Wiley & Sons Inc., New York, NY, USA.
  11. Kim, J. and Van der Bruggen, B. (2010), "The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment", Environ. Pollut., 158(7), 2335-2349. https://doi.org/10.1016/j.envpol.2010.03.024
  12. Li, Q., Xu, Z. and Yu, L.Y. (2010), "Effects of mixed solvents and PVDF types on performances of PVDF microporous membrane", J. Appl. Polym. Sci., 115(4), 2277-2287. https://doi.org/10.1002/app.31324
  13. Li, W., Sun, X.L., Wen, C., Lu, H. and Wang, Z. (2013), "Preparation and characterization of poly (vinylidene fluoride)/ $TiO_2$ hybrid membranes", Front. Environ. Sci. Eng., 7(4), 492-502. https://doi.org/10.1007/s11783-012-0407-x
  14. Liu, F., Hashim, N.A., Liu, Y., Moghareh Abed, M.R. and Li, K. (2011), "Progress in the production and modification of PVDF membranes", J. Membr. Sci., 375(1-2), 1-27. https://doi.org/10.1016/j.memsci.2011.03.014
  15. Loeb, S. and Sourirajan, S. (1964), High flow porous membranes for separating water from saline solutions; U.S. Pat. No. 3,133,132.
  16. Luo, M.L. and Zhao, J.Q., Tang, W. and Pu, C.S. (2005), "Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of $TiO_2$ nanoparticles", Appl. Surf. Sci., 249(1-4), 76-84. https://doi.org/10.1016/j.apsusc.2004.11.054
  17. Madaeni, S.S., Zinadini, S. and Vatanpour, V. (2011), "A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized $TiO_2$ nanoparticles", J. Membr. Sci., 380(1-2), 155-162. https://doi.org/10.1016/j.memsci.2011.07.006
  18. Mulder, M. (1996), Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  19. Ngang, H.P., Ooi, B.S., Ahmad, A.L. and Lai, S.O. (2012), "Preparation of PVDF-$TiO_2$ mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties", Chem. Eng. J., 197, 359-367. https://doi.org/10.1016/j.cej.2012.05.050
  20. Oh, S.J., Kim, N. and Lee, Y.T. (2009), "Preparation and characterization of PVDF/$TiO_2$ organic-inorganic composite membranes for fouling resistance improvement", J. Membr. Sci., 345(1-2), 13-20. https://doi.org/10.1016/j.memsci.2009.08.003
  21. Wang, Q., Wang, Z. and Wu, Z. (2012), "Effects of solvent compositions on physicochemical properties and anti fouling ability of PVDF microfiltration membranes for wastewater treatment", Desalination, 297, 79-86. https://doi.org/10.1016/j.desal.2012.04.020
  22. Rahimpour, A., Madaeni, S.S., Taheri, A.H. and Mansourpanah, Y. (2008), "Coupling $TiO_2$ nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes", J. Membr. Sci., 313(1-2), 158-169. https://doi.org/10.1016/j.memsci.2007.12.075
  23. Rahimpour, A., Jahanshahi, M., Rajaeian, B. and Rahimnejad, M. (2011), "$TiO_2$ entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties", Desalination, 278(1-3), 343-353. https://doi.org/10.1016/j.desal.2011.05.049
  24. Rana, D. and Matsuura, T. (2010), "Surface Modifications for Antifouling Membranes", Chem. Rev., 110(4), 2428-2471.
  25. Razmjou, A. (2012), "The effect of $TiO_2$ nanoparticles on the surface chemistry, structure and fouling performance of polymeric membranes", Ph.D. Dissertation; The University of New South Wales, Sydney, Australia.
  26. Razzaghi, M.H., Safekordi, A., Tavakolmoghadam, M., Rekabdar, F. and Hemmati, M. (2014), "Morphological and separation performance study of PVDF/CA blend membranes", J. Membr. Sci., 470, 547-557. https://doi.org/10.1016/j.memsci.2014.07.026
  27. Safarpour, M., Khataee, A. and Vatanpour, V. (2014), "Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide ($TiO_2$) nanocomposite with enhanced hydrophilicity and antifouling properties", Ind. Eng. Chem. Res., 53(34), 13370-13382. https://doi.org/10.1021/ie502407g
  28. Shih, H.C., Yeh, Y.S. and Yasuda, H. (1990), "Morphology of microporous poly(vinylidene fluride) membranes studied by gas permeation and scanning electron microscopy", J. Membr. Sci., 50(3), 299-317. https://doi.org/10.1016/S0376-7388(00)80627-4
  29. Shon, H.K., Puntsho, S., Vigneswaran, S., Kandasamy, J., Kim, J.B., Park, H.J. and Kim, I.S. (2010), "PVDF-$TiO_2$ Coated Microfiltration Membranes: Preparation and Characterization", Membr. Water Treat., Int. J., 1(3), 1-14. https://doi.org/10.12989/mwt.2010.1.1.001
  30. Song, H., Shao, J., He, Y., Liu, B. and Zhong, X. (2012), "Natural organic matter removal and flux decline with PEG-$TiO_2$-doped PVDF membranes by integration of ultrafiltration with photocatalysis", J. Membr. Sci., 405-406, 48-56. https://doi.org/10.1016/j.memsci.2012.02.063
  31. Teow, Y.H., Ahmad, A.L., Lim, J.K. and Ooi, B.S. (2012), "Preparation and characterization of PVDF/$TiO_2$ mixed matrix membrane via in situ colloidal precipitation method", Desalination, 295, 61-69. https://doi.org/10.1016/j.desal.2012.03.019
  32. Tavakolmoghadam, M., Mohammadi, T., Hemmati, M. and Naeimpour, F. (2016), "Surface modification of PVDF membranes by sputtered $TiO_2$: Fouling reduction potential in membrane bioreactors", Desalin. Water Treat., 57(8), 3328-3338. https://doi.org/10.1080/19443994.2014.984635
  33. Tao, M., Liu, F., Ma, B.R. and Xue, L.X. (2013), "Effect of solvent power on PVDF membrane polymorphism during phase inversion", Desalination, 316, 137-145. https://doi.org/10.1016/j.desal.2013.02.005
  34. Wang, Q., Wang, Z. and Wu, Z. (2012), "Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment", Desalination, 297, 79-86. https://doi.org/10.1016/j.desal.2012.04.020
  35. Wang, P., Ma, J., Shi, F., Ma, Y., Wang, Z. and Zhao, X. (2013), "Behaviors and effects of differing dimensional nanomaterials in water filtration membranes through the classical phase inversion process: A review", Ind. Eng. Chem. Res., 52(31), 10355-10363. https://doi.org/10.1021/ie303289k
  36. Wu, G., Gan, S., Cui, L. and Xu, Y. (2008), "Preparation and characterization of PES/$TiO_2$ composite membranes", Appl. Surf. Sci., 254(21), 7080-7086. https://doi.org/10.1016/j.apsusc.2008.05.221
  37. Yeow, M.L., Liu, Y.T. and Li, K. (2004), "Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature", J. Appl. Polym. Sci., 92(3), 1782-1789. https://doi.org/10.1002/app.20141
  38. Zhang, P.-Y., Yang, H. and Xu, Z.-L. (2012), "Preparation of polyvinylidene fluoride (PVDF) membranes via nonsolvent induced phase separation process using a tween 80 and $H_2O$ mixture as an additive", Ind. Eng. Chem. Res., 51(11), 4388-4396. https://doi.org/10.1021/ie201806v
  39. Zhang, G., Lu S., Zhang L., Meng, Q., Shen, C. and Zhang, J. (2013), "Novel polysulfone hybrid ultrafiltration membrane prepared with $TiO_2$-g-HEMA and its antifouling characteristics", J. Membr. Sci., 436, 163-173. https://doi.org/10.1016/j.memsci.2013.02.009
  40. Zhang, Z., Guo, C., Liu, G., Li, X., Guan, Y. and Lv, J. (2014), "Effect of TEP content in cooling bath on porous structure, crystalline and mechanical properties of PVDF hollow fiber membranes", Polym. Eng. Sci., 54(9), 2207-2214. https://doi.org/10.1002/pen.23763

Cited by

  1. Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide vol.9, pp.6, 2016, https://doi.org/10.12989/mwt.2018.9.6.481
  2. Preparation of Nano-SiO 2 /Al 2 O 3 /ZnO-Blended PVDF Cation-Exchange Membranes with Improved Membrane Permselectivity and Oxidation Stability vol.11, pp.12, 2016, https://doi.org/10.3390/ma11122465
  3. Morphology control in PVDF membranes using PEG/PVP additives and mixed solvents vol.11, pp.4, 2016, https://doi.org/10.12989/mwt.2020.11.4.237
  4. Temperature distribution in polymer film during thermally induced phase separation (TIPS): simulations and experimental observation vol.28, pp.8, 2016, https://doi.org/10.1007/s10965-021-02670-3
  5. Recent advances in polymer membranes employing non-toxic solvents and materials vol.23, pp.24, 2016, https://doi.org/10.1039/d1gc03318b