DOI QR코드

DOI QR Code

SURE-based-Trous Wavelet Filter for Interactive Monte Carlo Rendering

몬테카를로 렌더링을 위한 슈어기반 실시간 에이트러스 웨이블릿 필터

  • 김수민 (한국과학기술원 전산학부) ;
  • 문보창 (한국과학기술원 전산학부) ;
  • 윤성의 (한국과학기술원 전산학부)
  • Received : 2016.04.18
  • Accepted : 2016.05.19
  • Published : 2016.08.15

Abstract

Monte Carlo ray tracing has been widely used for simulating a diverse set of photo-realistic effects. However, this technique typically produces noise when insufficient numbers of samples are used. As the number of samples allocated per pixel is increased, the rendered images converge. However, this approach of generating sufficient numbers of samples, requires prohibitive rendering time. To solve this problem, image filtering can be applied to rendered images, by filtering the noisy image rendered using low sample counts and acquiring smoothed images, instead of naively generating additional rays. In this paper, we proposed a Stein's Unbiased Risk Estimator (SURE) based $\grave{A}$-Trous wavelet to filter the noise in rendered images in a near-interactive rate. Based on SURE, we can estimate filtering errors associated with $\grave{A}$-Trous wavelet, and identify wavelet coefficients reducing filtering errors. Our approach showed improvement, up to 6:1, over the original $\grave{A}$-Trous filter on various regions in the image, while maintaining a minor computational overhead. We have integrated our propsed filtering method with the recent interactive ray tracing system, Embree, and demonstrated its benefits.

몬테카를로 렌더링은 사진과 흡사한 이미지를 렌더링하는 데 널리 쓰이는 기술이다. 그러나 이 기술로 고품질의 이미지를 얻으려면 픽셀 당 샘플의 수를 증가시켜야 하며, 필연적으로 긴 렌더링 시간을 필요로 한다. 이 문제를 풀기 위하여, 이미지 필터링 기술을 적용할 수 있다. 이는 적은 샘플 수로, 노이즈가 존재하는 렌더링 결과를 빠른 시간 내에 구한 뒤, 필터링을 적용하여 추가적인 샘플 없이 정답 이미지에 근사하는 부드러운 이미지를 얻는 방법이다. 본 논문에서는 에이트러스 웨이블릿필터에 스테인의 공평 에러 추정법(SURE)을 적용하여, 실시간에 가까운 속도로 렌더링한 이미지의 노이즈를 제거하는 방법을 제안한다. 슈어(SURE)를 이용하여 에이트러스 웨이블릿 필터의 필터링으로 인한 에러를 추정할 수 있고, 이를 통하여 에러를 줄이는 방향으로 웨이블릿의 계수를 정할 수 있다. 본 연구진은 이 필터링 방법을 최신 실시간 광선추적법 시스템인 엠브리(embree)에 적용하여 성능을 확인하였다.

Keywords

Acknowledgement

Supported by : NRF

References

  1. Kajiya J. T., "The rendering equation," Proc. of the ACM SIGGRAPH Computer Graphics, Vol. 20, No. 4, pp. 143-150, 1986.
  2. Cook R. L., Porter T., Carpenter L., "Distributed ray tracing," Proc. of the ACM SIGGRAPH Computer Graphics, Vol. 18, No. 3, pp. 137-145, 1984.
  3. Mitchell D. P., "Generating antialiased images at low sampling densities," Proc. of the ACM SIGGRAPH Computer Graphics, Vol. 21, No. 4, pp. 65-72, 1987.
  4. Mitchell D. P., "Spectrally optimal sampling for distribution ray tracing," Proc. of the ACM SIGGRAPH Computer Graphics, Vol. 25, No. 4, pp. 157-164, 1991.
  5. Zwicker M., Jarosz W., Lehtinen J., Moon B., Ramamoorthi R., Rousselle F., Sen P., Soler C., Yoon S.-E., "Recent advances in adaptive sampling and reconstruction for monte carlo rendering," Computer Graphics Forum, Vol. 34, No. 2, pp. 667-681, 2015. https://doi.org/10.1111/cgf.12592
  6. Kaur L., Gupta S., Chauhan R., "Image denoising using wavelet thresholding," Proc. of ICVGIP, Vol. 2, pp. 16-18, 2002.
  7. Donoho D. L., Johnstone I. M., "Adapting to unknown smoothness via wavelet shrinkage," Journal of the American statistical association, Vol. 90, No. 432, pp. 1200-1224, 1995. https://doi.org/10.1080/01621459.1995.10476626
  8. Gonzalez R. C., Digital image processing, 2nd Ed., Pearson Education India, 2009.
  9. Dammertz H., Sewtz D., Hanika J., Lensch H., "Edge-avoiding a-trous wavelet transform for fast global illumination filtering," Proc. of the Conference on High Performance Graphics, Eurographics Association, pp. 67-75, 2010.
  10. Stein C. M., "Estimation of the mean of a multivariate normal distribution," The annals of Statistics, pp. 1135-1151, 1981. https://doi.org/10.1214/aos/1176345632
  11. Blu, T., Luisier F., "The sure-let approach to image denoising," IEEE Transactions on Image Processing, Vo. 16, No. 11, pp. 2778-2786, 2007. https://doi.org/10.1109/TIP.2007.906002
  12. Rangarajan R., Venkataramanan R., Shah S., "Image denoising using wavelets," Wavelet and Time Frequencies, 2002.
  13. Wald I., Woop S., Benthin C., Johnson G. S., Ernst M., "Embree: a kernel framework for efficient cpu ray tracing," ACM Transactions on Graphics (TOG), Vol. 33, No. 4, pp. 143, 2014.
  14. Li, Tzu-Mao; Wu, Yu-Ting; Chuang, Yung-Yu, "SURE-based optimization for adaptive sampling and reconstruction," ACM Transactions on Graphics (TOG), Vol. 31, No. 6, pp. 194, 2012.