DOI QR코드

DOI QR Code

염분과 온도의 동시 영향에 따른 해양 미세조류 Nannochloropsis granulata와 Chlorella vulgaris의 중성지질 및 녹말 축적에 관한 연구

Simultaneous Effect of Salinity and Temperature on the Neutral Lipid and Starch Accumulation by Oceanic Microalgae Nannochloropsis granulata and Chlorella vulgaris

  • 고경준 (제주대학교 해양생명과학과) ;
  • 이치헌 (제주대학교 해양생명과학과) ;
  • 문혜나 (제주대학교 해양생명과학과) ;
  • 이연지 (제주대학교 해양생명과학과) ;
  • 양진주 (대한피부과학연구소) ;
  • 조기철 (한국기초과학지원연구원 제주센터) ;
  • 김대경 (한국기초과학지원연구원 제주센터) ;
  • 여인규 (제주대학교 해양생명과학과)
  • Ko, Kyungjun (Department of Marine life Science, Jeju National University) ;
  • Lee, Chi-Heon (Department of Marine life Science, Jeju National University) ;
  • Moon, Hye-Na (Department of Marine life Science, Jeju National University) ;
  • Lee, Yeon-Ji (Department of Marine life Science, Jeju National University) ;
  • Yang, Jinju (Korea Dermatology Research Institute) ;
  • Cho, Kichul (Jeju Center, Korea Basic Science Institute (KBSI)) ;
  • Kim, Daekyung (Jeju Center, Korea Basic Science Institute (KBSI)) ;
  • Yeo, In-Kyu (Department of Marine life Science, Jeju National University)
  • 투고 : 2016.06.29
  • 심사 : 2016.08.05
  • 발행 : 2016.08.25

초록

미세조류는 육상 식물과 비교하여 높은 성장률을 나타내며 다량의 지질과 탄수화물을 축적할 뿐 아니라 카로테노이드, 폴리페놀과 같은 생리활성 물질들을 체내에 축적하므로 바이오 에너지 및 기타 산업의 유망한 재료로 인식 되어왔다. 미세조류의 온도, 염분, 빛 등 비생물적 스트레스와 다양한 배양 조건에 따른 생화학 물질의 축적 변화 양상에 대한 연구는 많이 진행되어 왔지만 그러한 조건들의 동시적인 효과에 따른 성장과 생화학물질 조성 변화에 대한 연구는 거의 진행되지 않았다. 따라서 이번 연구에서는 산업적으로 많이 활용되고 있는 두 해양 미세조류인 Chlorella vulgaris와 Nannochloropsis granulata의 염분(10, 30, 50 psu) 및 온도(20, 25, $30^{\circ}C$)의 동시 배양 조건에 따른 바이오 매스의 변화와 바이오 에너지에 사용되는 중성지질 및 녹말의 축적 변화를 회분배양의 실험적 조건에서 측정하였다. 그 결과 $30^{\circ}C$, 30 psu 조건에서 C. vulgaris 및 N. granulata 모두 가장 높은 성장을 나타냈고, 광합성 색소인 chlorophyll a 및 carotenoid의 축적 양상이 온도 의존적으로 증가하였으며 중성지질과 녹말의 축적은 염분과 온도의 조합에 따라 두 종의 양상이 서로 다르게 나타나는 사실을 확인할 수 있었다. 이를 통해 미세조류의 염분에 의한 성장과 중성지질 및 녹말의 축적 양상은 서로 다른 온도 조건에 따라 그 변화 정도가 다르게 나타날 수 있다는 사실을 확인할 수 있었다.

Because microalgae represent high growth rate than terrestrial plants, and it can accumulate significant lipid and carbohydrate content, and other bioactive compounds such as carotenoid and polyphenol in their body, it has been considered as one of the promising resources in bio-energy, and other industries. Although many studies has been performed about the microalgae-derived biochemical accumulation under various abiotic conditions such as different temperatures, salinities and light intensities, the studies about simultaneous effect of those parameters has rarely been performed. Therefore, this study focused on evaluation of simultaneous effect of different salinity (10, 30, 50 psu) and temperatures (20, 25, $30^{\circ}C$) on the changes of biomass, lipid, starch and photosynthetic pigment accumulation. As results, the highest growth rate was achieved at $30^{\circ}C$ and 30 psu in the both algal cultures, and the photosynthetic pigment, chlorophyll a and total carotenoid content, were increased in a temperature-dependent manner. The accumulation of lipid and starch contents exhibited different aspects under different combinations of temperature and salinity. From the results, it is suggested that the changes of microalgal lipid and starch accumulation under different salinities may be affected by the different temperatures.

키워드

참고문헌

  1. Aaronson, S., 1973, "Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonasdanica", J Phycol, 9, 111-113. https://doi.org/10.1111/j.0022-3646.1973.00111.x
  2. Al Ahmad, M., Al-Zuhair, S., Taher, H. and Hilal-Alnaqbi, A., 2014, "RF Microalgal lipid content characterization", Sci Rep, 4.
  3. Armstrong, G.A. and Hearst, J.E., 1996, "Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis", FASEB J, 10, 228-237. https://doi.org/10.1096/fasebj.10.2.8641556
  4. A. Lehninger, D. and Nelson, M., 2005, "Cox, Lehninger Principles of Biochemistry", 4th ed, W.H. Freeman, New York.
  5. Borowitzka, M.A., Borowitzka, L.J. and Kessly, D., 1990, "Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina", J Appl Phycol, 2, 111-119. https://doi.org/10.1007/BF00023372
  6. Bridgwater, A.V., Toft, A.J. and Brammer, J.G., 2002, "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion", Renew Sust Energ Rev. 6, 181-248. https://doi.org/10.1016/S1364-0321(01)00010-7
  7. Branyikova, I., Marsalkova, B., Doucha, J., Branyik, T., Bisova, K., Zachleder, V. and Vitova, M., 2011, "Microalgae-novel highly efficient starch producers", Biotechnol Bioene, 108, 766-776. https://doi.org/10.1002/bit.23016
  8. Chen, W., Zhang, C., Song, L., Sommerfeld, M. and Hu, Q., 2009, "A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae", J Microbiol Meth, 77, 41-47. https://doi.org/10.1016/j.mimet.2009.01.001
  9. Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H., Cheng, C.L., Lee, D.J. and Chang, J.S., 2013, "Microalgae-based carbohydrates for biofuel production", Biochem Eng J, 78, 1-10. https://doi.org/10.1016/j.bej.2013.03.006
  10. Chisti, Y., 2007, "Biodiesel from microalgae", Biotechnol Adv, 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  11. Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P. and Borghi, M.D., 2009, "Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production.", Chem Eng Process, 48, 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
  12. Ding, L., Ma, Y., Huang, B. and Chen, S., 2013, "Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta)", Biomed Res Int, 2013.
  13. De Oliveira, M.A.C.L., Monteiro, M.P.C., Robbs, P.G. and Leite, S.G.F., 1999, "Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures", Aquacul Int, 7, 261-275. https://doi.org/10.1023/A:1009233230706
  14. Emerson, R., Stauffer, J. and Umbreit, W., 1944, "Relationships between phosphorylation and photosynthesis in Chlorella", Am J Bot, 31, 107-120. https://doi.org/10.2307/2437601
  15. Fatih Demirbas, M., 2009, "Biorefineries for biofuel upgrading: a critical review", Appl Energ, 86, S151-S161. https://doi.org/10.1016/j.apenergy.2009.04.043
  16. Fogg, G.E. and Thake, B., 1987, "Algal Cultures and Phytoplankton Ecology", 3rd ed. London, The University of Wisconsin Press, Ltd.
  17. Fabregas, J., Abalde, J., Herrero, C., Cabezas, B. and Veiga, M., 1984, "Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations", Aquaculture, 42, 207-215. https://doi.org/10.1016/0044-8486(84)90101-7
  18. Ho, S.H., Chen, C.Y. and Chang, J.S., 2012, "Effect of light intensity and nitrogen starvation on $CO_2$ fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N", Bioresource Technol, 113, 244-252. https://doi.org/10.1016/j.biortech.2011.11.133
  19. Juneja, A., Ceballos, R.M. and Murthy, G.S., 2013, "Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production, A Review", Energies, 6, 4607-4638. https://doi.org/10.3390/en6094607
  20. Kumar, M., Kumari, P., Gupta, V., Reddy, C.R.K. and Jha, B., 2010, "Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress", J Exp Mar Biol Ecol, 391, 27-34. https://doi.org/10.1016/j.jembe.2010.06.001
  21. Kirrolia, A., Bishnoi, N.R. and Singh, R., 2012, "Effect of shaking, incubation temperature, salinity and media composition on growth traits of green microalgae Chlorococcum sp.", J Algal Biom Utlzn, 3, 46-53.
  22. Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero N., 2008, "Biofuels from microalgae", Biotechnol Progr, 24, 815-820.
  23. Liang, Y., Sarkany, N. and Cui, Y., 2009, "Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions", Biotechnol Lett, 31, 1043-1049. https://doi.org/10.1007/s10529-009-9975-7
  24. Levasseur, M., Thompson, P.A. and Harrison, P.J., 1993, "Physiological acclimation of marine phytoplankton to different nitrogen sources", J Phycol, 29, 587-595. https://doi.org/10.1111/j.0022-3646.1993.00587.x
  25. Liu, B.H. and Lee, Y.K., 2000, "Secondary carotenoids formation by the green alga Chlorococcum sp.", J Appl Phycol, 12, 301-307. https://doi.org/10.1023/A:1008185212724
  26. Lorenzen, C.J., 1967. "Determination of chlorophyll and pheopigments: spectrophotometric equations", Limnol Oceanogr, 12, 343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  27. McCready, R.M., Guggolz, J., Silviera, V. and Owens, H.S., 1950, "Determination of starch and amylose in vegetables", Anal Chem 22, 1156-1158. https://doi.org/10.1021/ac60045a016
  28. Miao, X. and Wu, Q., 2006, "Biodiesel production from heterotrophic microalgal oil", Bioresour Technol, 97, 841-846. https://doi.org/10.1016/j.biortech.2005.04.008
  29. Moazami, N., Ranjbar, R., Ashori, A., Tangestani, M. and Nejad, A.S., 2011, "Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island", Biomass Bioenerg, 35, 1935-1939. https://doi.org/10.1016/j.biombioe.2011.01.039
  30. Nakamura, Y., 1983, "Change in molecular weight distribution in starch when degraded at different temperatures in Chlorella vulgaris", Plant Sci Lett, 30, 259-265. https://doi.org/10.1016/0304-4211(83)90164-5
  31. Nakamura, Y. and Imamura, M., 1983, "Change in properties of starch when photosynthesized at different temperatures in Chlorella vulgaris", Plant Sci Lett, 31, 123-131. https://doi.org/10.1016/0304-4211(83)90048-2
  32. Ogbonda, K.H., Aminigo, R.E. and Abu, G.O., 2007, "Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp", Bioresour Technol, 98, 2207-2211. https://doi.org/10.1016/j.biortech.2006.08.028
  33. Provasoli, L., McLaughlin, J.J.A. and Droop, M.R., 1957, "The development of artificial media for marine algae", Arch Mikrobiol, 25, 392-428. https://doi.org/10.1007/BF00446694
  34. Priyadarshani, I. and Rath, B., 2012, "Commercial and industrial applications of micro algae-A review", J algal biomass utln, 3, 89-100.
  35. Priya, K., 2013, "Induction of bioactive compound composition from marine microalgae (Lyngbya sp.) by using different stress condition", J Coast Life Med, 1, 205-209.
  36. Raven, J.A. and Geider, R.J., 1988, "Temperature and algal growth", New Phytol. 110, 441-461. https://doi.org/10.1111/j.1469-8137.1988.tb00282.x
  37. Ren, H.Y., Liu, B.F., Ma, C., Zhao, L. and Ren, N.Q., 2013, "A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production", Biotechnol Biofuels, 6, 1. https://doi.org/10.1186/1754-6834-6-1
  38. Siaut, M., Cuine, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylides, C., Li-Beisson, Y.H. and Peltier, G., 2011, "Oil accumulation in the model green alga Chlamydomonas reinhardtii, characterization, variability between common laboratory strains and relationship with starch reserves", BMC Biotechnol, 11.
  39. Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C. and Hankamer, B., 2008, "Second generation biofuels, high-efficiency microalgae for biodiesel production", Bioenergy Res, 1, 20-43. https://doi.org/10.1007/s12155-008-9008-8
  40. Subhadra, B. and Edwards, M., 2010, "An integrated renewable energy park approach for algal biofuel production in USA", Energ Policy, 38, 4897-4902. https://doi.org/10.1016/j.enpol.2010.04.036
  41. Takagi, M. and Yoshida, T., 2006, "Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells", J Biosci Bioeng, 101, 223-226. https://doi.org/10.1263/jbb.101.223
  42. Tkachuk, R., Mellish, V.J., Daun, J.K. and Macri, L.J., 1988, "Determination of chlorophyll in ground rapeseed using a modified near infrared reflectance spectrophotometer", J Am Oil Chem Soc, 65, 381-385. https://doi.org/10.1007/BF02663082
  43. Vonshak, A., Kancharaksa, N., Bunnag, B. and Tanticharoen, M., 1996, "Role of light and photosynthesis on the acclimation process of the cyanobacterium Spirulina platensis to salinity stress", J Appl Phycol, 8, 119-124. https://doi.org/10.1007/BF02186314
  44. Vonshak, A. and Torzillo, G., 2004, "Environmental Stress Physiology", In Handbook of Microalgal Culture, Richmond, A, Ed, Blackwell, Oxford, UK, 2004, pp. 57-82.
  45. Widjaja, A., Chien, C.C. and Ju, Y.H., 2009, "Study of increasing lipid production from fresh water microalgae Chlorella vulgaris", J Taiwan Inst Chem Eng. 40, 13-20. https://doi.org/10.1016/j.jtice.2008.07.007
  46. Wellburn, A.R., 1994, "The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution", J Plant Physiol, 144, 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  47. Yao, C.H., Ai, J.N., Cao, X.P. and Xue, S., 2013, "Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis", Bioresource Technol, 146, 663-671. https://doi.org/10.1016/j.biortech.2013.07.134
  48. Yilancioglu, K., Cokol, M., Pastirmaci, I., Erman, B. and Cetiner, S., 2014, "Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain", PloS One, 9, e91957. https://doi.org/10.1371/journal.pone.0091957
  49. Zhu, C.J., Lee, Y.K. and Chao, T.M., 1997, "Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1", J Appl Phycol, 9, 451-457. https://doi.org/10.1023/A:1007973319348
  50. Zhu, C.J. and Lee, Y.K., 1997, "Determination of biomass dry weight of marine microalgae", J Appl Phycol, 9, 189-194. https://doi.org/10.1023/A:1007914806640
  51. Zhila, N.O., Kalacheva, G.S. and Volova, T.G., 2011, "Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kutz IPPAS H-252", J Appl Phycol. 23, 47-52. https://doi.org/10.1007/s10811-010-9532-8