DOI QR코드

DOI QR Code

A Physical Properties of Lightweight Foamed Concrete According to Lightweight Aggregate Types and Foaming agent Types

경량골재와 기포제 종류에 따른 경량기포 콘크리트의 물리적 특성

  • 김하석 (한국건설기술연구원 건축도시연구소) ;
  • 이세현 (한국건설기술연구원 건축도시연구소) ;
  • 선정수 (공주대학교 건축공학과) ;
  • 김진만 (공주대학교 건축공학과)
  • Received : 2015.12.01
  • Accepted : 2016.06.21
  • Published : 2016.08.31

Abstract

In Korea, approximately 48% of all households live in apartments, which are a form of multi-unit dwellings, and this figure increases up to 58%, when row houses and multiplex houses are included. As such, majority of the population reside in multi-unit dwellings where they are exposed to the problem of floor impact noise that can cause disputes and conflicts. Accordingly, this study was conducted to manufacture a high-weight, high-stiffness foamed concrete in order to develop a technology to reduce the floor impact noise. For the purpose of deriving the optimum mixing ratio for the foamed concrete that best reduces the floor impact noise, the amounts of the foaming agent, lightweight aggregate and binder were varied accordingly. Also, the target characteristics of the concrete to be developed included density of over $0.7t/m^3$, compressive strength of over $2.0N/mm^2$ and thermal conductivity of under 0.19 W/mK. The results of the experiment showed that the fluidity was very excellent at over 190 mm, regardless of the type and input amount of foaming agent and lightweight aggregate. The density and compressive strength measurements showed that the target density and compressive strength were satisfied in the specimen with 50% foam mixing ratio for foamed concrete and in all of the mixtures for the lightweight aggregate foamed concrete. In addition, the thermal conductivity measurements showed that the target thermal conductivity was satisfied in all of the foamed concrete specimens, except for VS50, in the 25% replacement ratio case for Type A aggregate, and all of the mixtures for Type B aggregate.

층간소음의 문제가 가장 크게 대두되고 있는 현재 층간소음 저감 방법으로 뜬바닥 구조에 적용되는 차음재등이 연구되고 있으나 이러한 방법의 경우 경량충격음에는 효과적이나 중량 충격음을 저감하기에는 재료 및 기술적 한계에 다다르고 있다. 중량충격음 저감을 위해서는 슬래브의 중량을 증가시켜 충격에 대해 바닥은 진동하기 어렵게 하여 충격에 의한 발생음을 저감시키거나, 슬래브의 강성을 높여 충격점의 유효 질량을 높여 중량충격음을 저감하는 것이 필요할 것으로 판단된다. 이에 본 연구에서는 중량 충격음을 저감하기 위한 한 방편으로 고중량, 고강성 기포콘크리트 제조함으로서 바닥충격음을 저감하기 위한 기술을 개발하고자 하였다. 연구 결과 기포제 종류 및 혼입량과 경량골재 종류 및 투입량과 관계없이 유동성은 190 mm이상으로 매우 우수한 것으로 나타났다. 밀도 및 압축강도 측정 결과 기포콘크리트의 경우 기포 혼입율 50%에서만, 경량골재 기포콘크리트의 경우 모든 배합에서 목표 밀도 및 압축강도를 만족하는 것으로 나타났다. 열전도율 측정 결과 기포콘크리트의 경우 VS50을 제외하고는 모두 만족하는 것으로 나타났으며, 경량골재 기포콘크리트의 경우 Type A 골재의 경우 대체율 25%, Type B의 경우 모든 배합에서 목표를 만족하는 것으로 나타났다.

Keywords

References

  1. National Noise Information System. 2013, http://www.noiseinfo.or.kr/index.jsp/
  2. Kim, C. et al., "Reduction of Floor Impact Sound and research subjects," Journal of the Korea institute of Building construction, 2003, Vol.3, No.3, pp.43-47. https://doi.org/10.5345/JKIC.2003.3.3.043
  3. Population and Hosung sensus, 2013, http://www.census.go.kr/
  4. Ministry of Land, Infrastructure and Transport, Regulations on the housing standards, 2014.
  5. Lee, K.D., "A Study on the Characteristics of the Floor Impact Noise and Vibration According to Structure Types of Apartment House," Journal of the Korea institute of Building construction, 2009, Vol.9, No.2, 99, pp.35-39.
  6. Ministry of environment, Development of Floor impact Noise Insulation System in Apartment Buildings, 2007.
  7. Kim, J. et al., "Properties of Foamed Concrete According to Types and Concentrations of Foam Agent," Journal of the Korea concrete institute, 2012, Vol.24, No.1, pp.61-70. https://doi.org/10.4334/JKCI.2012.24.1.061
  8. Kim, J. et al., "Properties of Bubble According to Types and Concentrations of Concrete Foaming Agent," Journal of the Korea concrete institute, 2011, Vol.23, No.2, pp.151-158. https://doi.org/10.4334/JKCI.2011.23.2.151
  9. Lee, D. et al., "Physical Properties and Quality control of Foamed Concrete with Fly Ash," Journal of the Korea concrete institute, 2001, Vol.13, No.1, pp.66-76.
  10. Oh, S. et al., "An Experimental Study on the Physical properties of Foamed Concrete with Blast-Furnace Slag," Journal of Architectural institute of Korea, 2002, Vol.18, No.7, pp.59-67.
  11. P. Kumar Mehta, Paulo J.M. Monteiro, Concrete : Microstructure, Properties, and materials, McGraw-Hill, San Francisco, 2004, pp.49-67.
  12. David R. Karsa. "Surfactants in Polymers, Coatings, Ink and adhesives," V.1. Blackwell Publishing, 2003. pp.95-9.
  13. Kim, S.-Y., (An) effect of mixing condition of lightweight aggregate concrete using the stone-powder on thermal conductivity, 2011 Hanyang Univ.
  14. Building materials, Architectural Institute of Korea(Kimoondang), 2011.
  15. New Concrete Engineering, Korea Concrete Institute(Kimoondang), 2005.
  16. Ashworth, T., Ashworth, E., Graves, R.S., and Wysocki, D.C., Insulation Materials : Testing and Applications. ASTM STP. Philadelphia, 1991, pp.415-29.