DOI QR코드

DOI QR Code

Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete

콘크리트의 전단마찰 내력에 대한 횡보강근 및 압축응력의 영향

  • Hwnag, Yong-Ha (Dept. of Architectural Engineering, Kyonggi University, Graduate School) ;
  • Yang, Keun-Hyeok (Dept. of Plant.Architectural Engineering, Kyonggi University)
  • 황용하 (경기대학교 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Received : 2015.11.18
  • Accepted : 2016.05.17
  • Published : 2016.08.31

Abstract

This study examined the effect of transverse reinforcement and compressive stress on the shear friction performance at the shear interface intersecting two structural elements with various concrete types. From the prepared 12 push-off test specimens, various characteristics at the interface were measured as follows: crack propagation, shear load-relative slip relationship, initial shear cracking strength, ultimate shear friction strength, and shear transfer capacity of transverse reinforcement. The configuration of transverse reinforcement and compressive strength of concrete insignificantly influenced the amount of relative slippage at the shear friction plane. With the increase of applied compressive stress, the shear friction capacity of concrete tended to increase proportionally, whereas the shear transfer capacity of transverse reinforcement decreased, which was insignificantly affected by the configuration type of transverse reinforcement. The empirical equations of AASHTO-LRFD and Mattock underestimate the shear friction strength of concrete, whereas Hwang and Yang model provides better reliability, indicating that the mean and standard deviation of the ratios between measured shear strengths and predictions are 1.02 and 0.23, respectively.

이 연구에서는 다양한 콘크리트를 갖는 전단계면에서의 전단마찰거동에 대한 횡보강근 및 압축응력의 영향을 평가하였다. 12개 직접전단실험체로부터 균열진전, 전단하중-상대 미끄러짐 관계, 균열발생시 전단응력, 최대전단내력 및 횡보강근의 전단저항력 등이 측정되었다. 실험결과 동일 전단하중에서 상대 미끄러짐 제어에 대한 횡보강근 배근형상 및 콘크리트 압축강도의 영향은 미미하였다. 작용 압축응력의 증가와 함께 콘크리트의 전단전달력을 증가하는 반면, 횡보강근의 전단전달력은 감소하였는데, 횡보강근의 전단저항은 배근형태에 의해 영향을 받지 않았다. AASHTO-LRFD, Mattock 및 Hwang and Yang의 모델은 콘크리트의 전단마찰내력을 과소평가하였다. 반면, Hwang and Yang의 모델은 실험결과와의 비교에 대한 평균과 표준편차 값이 각각 1.02과 0.23으로서 기존 모델에 비해 다양한 변수의 영향을 적절히 고려하면서 콘크리트의 전단마찰내력을 잘 예측하였다.

Keywords

References

  1. Yang, K. H., Sim, J. I., Kang, J. H., and Ashour, A. F., "Shear Capacity of Monolithic Concrete Joints Without Transverse Reinforcement," Magazine of Concrete Research, Vol.64, No.9, 2012, pp.767-780. https://doi.org/10.1680/macr.11.00107
  2. Mattock, A. H., "Shear Friction and High-Strength Concrete," ACI Structural Journal, Vol.98, No.1, 2001, pp.50-59.
  3. Walraven, J. C., Frenay, J., and Pruijssers, A., "Influence of Concrete Strength and Load History on the Shear Friction Capacity of Concrete Members," PCI Journal, Vol.32, No.1, 1987, pp.66-84. https://doi.org/10.15554/pcij.01011987.66.84
  4. Mattock, A. H., Shear Transfer under Monotonic Loading, Acrossan Interface Between Concretes Cast at Different Times, Report No. SM76-3, University of Washington Department of Civil Engineering, Seattle, Washington, 1976, pp.1-35.
  5. Loov, R. E., and Patnaik, A. K., "Horizontal Shear Strength of Composite Concrete Beams With a Rough Interface," PCI Journal, Vol.39, No.1, 1994, pp.48-69. https://doi.org/10.15554/pcij.01011994.48.69
  6. Mattock, A. H., Johal, L., and Chow, H. C., "Shear Transfer in Reinforced Concrete with Moment or Tension Acting Across the Shear Plane", PCI Journal, Vol.20, No.4, 1975, pp.76-93. https://doi.org/10.15554/pcij.07011975.76.93
  7. Mattock, A. H., and Hawkins, N. M., "Shear Transfer in Reinforced Concrete-Recent Research", PCI Journal, Vol.17, No.2, 1972, pp.76-93.
  8. Hofbeck, J. A., Ibrahim, I. O., and Mattock, A. H., "Shear Transfer in Reinforced Concrete," ACI Structural Journal, Vol.66, No.2, 1969, pp.119-128.
  9. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, American Concrete Institute, Farmington Hills, Michigan, USA, 2011.
  10. AASHTO, AAHSTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, 2012, pp.5.78-5.80.
  11. European Committee, Eurocode 8 : Design of structures for Earthquake Resistance(BS EN-1998), European Commission, 2004.
  12. Kim, S.C., and Park, S.Y., "A Study on Shear Steel Effect on RC Deep Beams," Journal of the Korean Society of Civil Engineers, Vol.25, No.2, 2005, pp.365-373.
  13. Hwang, Y.H, and Yang, K.H., "Shear Friction Strength Model of Concrete considering Transverse Reinforcement and Axial Stresses," Journal of the Korea Concrete Institute, Vol.28, No.2, 2016, pp.167-176. https://doi.org/10.4334/JKCI.2016.28.2.167

Cited by

  1. Shear friction strength of monolithic concrete interfaces vol.69, pp.5, 2017, https://doi.org/10.1680/jmacr.16.00190