References
- J. Liu, M. A. Brooke, and K. Hirotsu, "A CMOS feedforward neural-network chip with on-chip parallel learning for oscillation cancellation," Neural Networks, IEEE Transactions on, 13 (5), pp. 1178-1186 , 2002. https://doi.org/10.1109/TNN.2002.1031948
- J. Liu, M. A. Brooke, and K. Hirotsu, "A CMOS feedforward neural-network chip with on-chip parallel learning for oscillation cancellation," Neural Networks, IEEE Transactions on, 13 (5), pp. 1178-1186 , 2002. https://doi.org/10.1109/TNN.2002.1031948
- P. Arena et al., "A CNN-based chip for robot locomotion control," Circuits and Systems I: Regular Papers, IEEE Transactions on, 52 (9), pp. 1862-11, 2005. https://doi.org/10.1109/TCSI.2005.852211
- H. Li, D. Zhang, and S. Foo, "A Stochastic Digital Implementation of a Neural Network Controller for Small Wind Turbine Systems," Power Electronics, IEEE Transactions on, 21 (5), pp. 1502-1507, 2006. https://doi.org/10.1109/TPEL.2006.882420
- T. Koickal et al., "Analog VLSI Circuit Implementation of an Adaptive Neuromorphic Olfaction Chip," Circuits and Systems I: Regular Papers, IEEE Transactions on, 54 (1), pp. 60-73, 2007. https://doi.org/10.1109/TCSI.2006.888677
- F. An, et al, "VLSI realization of learning vector quantization with hardware/software co-design for different applications," Japanese Journal of Applied Physics, 54, 04DE05, 2015. https://doi.org/10.7567/JJAP.54.04DE05
- D. Anguita, A. Bon, and S. A Ridella, "A digital architecture for support vector machines: theory, algorithm, and FPGA implementation," Neural Networks, IEEE Transactions on, 14 (5), pp. 993-1009, 2003. https://doi.org/10.1109/TNN.2003.816033
- D. Anguita and A. Boni, "Improved neural network for SVM learning," Neural Networks, IEEE Transactions on, vol. 13, pp. 1243-1244, 2002. https://doi.org/10.1109/TNN.2002.1031958
- S. S. Keerthi and E. G. Gilbert, "Convergence of a Generalized SMO Algorithm for SVM Classifier Design," Machine Learning, Vol. 46, pp. 351-360, 2002. https://doi.org/10.1023/A:1012431217818
- C. Kyrkou, and T. Theocharides, "A Parallel Hardware Architecture for Real-Time Object Detection with Support Vector Machines," Computers, IEEE Transactions on, 61 (6), pp.831-842 (2012). https://doi.org/10.1109/TC.2011.113
- T. M. Cover and P. E. Hart, "Nearest neighbor pattern classification," Information Theory, IEEE Transactions on, 13, pp. 21-27, (1967). https://doi.org/10.1109/TIT.1967.1053964
- E. S. Manolakos, and I. Stamoulias, "IP-cores design for the kNN classifier", in Proc. ISCAS, pp. 4133-4136, 2010.
- Md. A. Abedin, et al, "Mixed digital-analog associative memory enabling fully parallel nearest Euclidean distance search", Japanese Journal of Applied Physics, 46, pp.2231-2237, 2007. https://doi.org/10.1143/JJAP.46.2231
- E. Fix and J. L. Hodges. Discriminatory analysis, nonparametric discrimination: Consistency properties. Technical Report 4, USAF School of Aviation Medicine, Randolph fiels, TX, 1951
- T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Trans. Inform. Theory, IT-13(1): 21-27, 1967.
- S. Jiang, G. Pang, M. Wu, L. Kuang, An improved K-nearest-neighbor algorithm for text categorization, Expert Systems with Applications, Vol. 39 (1), pp. 1503-1509, 2012. https://doi.org/10.1016/j.eswa.2011.08.040
- F. Pan, B. Wang, X. Hu, and W. Perrizo, "Comprehensive vertical sample-based knn/lsvm classification for gene expression analysis," J. Biomed. Inform., vol. 37, pp. 240-248, 2004. https://doi.org/10.1016/j.jbi.2004.07.003
- H. Zhang, A. C. Berg, M. Maire, and J. Malik, "SVM-KNN: Discriminative nearest neighbor classification for visual category recognition," in International Conference on Computer Vision and Pattern Recognition, pp. 2126-2136, 2006.
- K. W. Hung and W. C. Siu, "Novel DCT-Based Image Up-Sampling Using Learning-Based Adaptive KNN MMSE Estimation," IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 12, pp. 2018-2033, 2014. https://doi.org/10.1109/TCSVT.2014.2329352
- F. An, et al, "A Coprocessor for Clock-Mappingbased Nearest Euclidean distance Search with Feature Vector Dimension Adaptability", in Proc. CICC, pp. 1-6 , 2014
- S. Sasaki, Masahiro Yasuda, and H. J. Mattausch., "Digital associative memory for word-parallel Manhattan-distance-based vector quantization", in Proc. ESSCIRC, pp. 185-188, 2012.
- T. Akazawa, S. Sasaki, and H. J. Mattausch, Word- Parallel Coprocessor Architecture for Digital Nearest Euclidean Distance Search, in Proc. ESSCIRC, 2013, pp. 267-270.
- T. Akazawa, S. Sasaki, and H. J. Mattausch, "Associative memory architecture for word-parallel smallest Euclidean distance search using distance mapping into clock-number domain," Japanese Journal of Applied Physics, 53, 04EE16, 2014. https://doi.org/10.7567/JJAP.53.04EE16
- F. An, K. Mihara, S. Yamasaki, L. Chen, and H. J. Mattausch, "Word-parallel Associative Memory for k-Nearest-Neighbor with Configurable Storage Space of Reference Vectors," IEEE Asian Solid- State Circuits Conference, pp. 14-4, 2015.
- E. A. Vittoz, et al, "Silicon-gate CMOS frequency divider for electronic wrist watch", Solide-State Circuits, IEEE Journal of, 7 (2), pp. 100-104, 1972. https://doi.org/10.1109/JSSC.1972.1050254