DOI QR코드

DOI QR Code

Comparison of Bioactive Constituents and Biological Activities of Aronia, Blackcurrant, and Maquiberry

아로니아, 블랙커런트, 마키베리의 기능성 성분 및 생리활성 비교

  • Chung, Hai-Jung (Department of Food Science and Nutrition, Daejin University)
  • 정해정 (대진대학교 식품영양학과)
  • Received : 2016.04.28
  • Accepted : 2016.07.07
  • Published : 2016.08.31

Abstract

In this study, bioactive constituents and biological activities of aronia, blackcurrant, and maquiberry were investigated. The 60% ethanol extracts were prepared and evaluated for total polyphenol, total flavonoid, and total anthocyanin contents. Biological activities, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, ferric reducing antioxidant power (FRAP), reducing power, tyrosinase inhibitory activity, and nitrite scavenging activity were also examined. Maquiberry showed the highest bioactive constituents as shown based on total polyphenol (73.66 mg GAE/g), total flavonoid (28.08 mg/g), and total anthocyanin (12.82 mg/g) contents compared to aronia and blackcurrant. Maquiberry also exhibited the highest DPPH and ABTS radical scavenging activity, FRAP, and reducing power at a concentration of 5 mg/mL, which were superior to those of ascorbic acid (a positive control). Therefore, maquiberry could be used as a potential source of antioxidants and functional food substances.

본 연구에서는 아로니아, 블랙커런트, 마키베리의 생리활성을 비교하기 위하여 총폴리페놀, 총플라보노이드, 총안토시아닌 함량, DPPH radical 소거능, ABTS radical 소거능, FRAP 활성, 환원력, tyrosinase 저해 효과, 아질산염 소거능 등을 측정하였다. 총폴리페놀 함량은 마키베리가 73.66 mg GAE/g으로 가장 높게 나타났고 그다음으로 아로니아 59.26 mg GAE/g, 블랙커런트 43.70 mg GAE/g 순이었다. 총플라보노이드 함량도 같은 경향을 나타내어 마키베리 28.08 mg/g, 아로니아 24.26 mg/g, 블랙커런트 16.82 mg/g 순으로 나타났으며, 총안토시아닌 함량은 마키베리가 12.82 mg/g으로 가장 높았고, 아로니아와 블랙커런트가 각각 9.52 mg/g과 8.95 mg/g으로 유의적인 차이를 보이지 않았다. 마키베리는 DPPH 및 ABTS radical 소거능, FRAP, 환원력에서 유의적으로 높은 활성을 나타내었고, 시료 농도 5 mg/mL에서는 양성대조군으로 사용한 ascorbic acid보다 우수한 효과를 보여주었다. 그다음으로는 아로니아가 우수한 활성을 보였으며 블랙커런트는 대부분의 기능성 실험 결과 가장 낮은 활성을 나타내었다. 이상의 결과를 종합하여 볼 때 마키베리는 천연 항산화제 및 건강 기능성 식품재료로서의 활용 가능성이 매우 높을 것으로 생각된다.

Keywords

References

  1. Lim YY, Lim TT, Tee JJ. 2007. Antioxidant properties of several tropical fruits: A comparative study. Food Chem 103: 1003-1008. https://doi.org/10.1016/j.foodchem.2006.08.038
  2. Jeong CH, Jang CW, Lee KY, Kim IH. 2012. Chemical components and anti-oxidant activities of black currant. Korean J Food Preserv 19: 263-270. https://doi.org/10.11002/kjfp.2012.19.2.263
  3. Bagchi D, Sen CK, Bagchi M, Atalay M. 2004. Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Moscow) 69: 75-80. https://doi.org/10.1023/B:BIRY.0000016355.19999.93
  4. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D. 2006. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54: 9329-9339. https://doi.org/10.1021/jf061750g
  5. Li H, Jeong JM. 2015. Antioxidant activities of various berries ethanolic extract. Korean J Med Crop Sci 23: 49-56. https://doi.org/10.7783/KJMCS.2015.23.1.49
  6. Lee Y, Lee JH, Kim SD, Chang MS, Jo IS, Kim SJ, Hwang KT, Jo HB, Kim JH. 2015. Chemical composition, functional constituents, and antioxidant activities of berry fruits produced in Korea. J Korean Soc Food Sci Mutr 44: 1295-1303. https://doi.org/10.3746/jkfn.2015.44.9.1295
  7. Miller MG, Shukitt-Hale B. 2012. Berry fruit enhances beneficial signaling in the brain. J Agric Food Chem 60: 5709-5715. https://doi.org/10.1021/jf2036033
  8. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. 2007. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51: 675-683. https://doi.org/10.1002/mnfr.200700002
  9. Kulling SE, Rawel HM. 2008. Chokeberry (Aronia melanocarpa)-A review on the characteristic components and potential health effects. Planta Med 74: 1625-1634. https://doi.org/10.1055/s-0028-1088306
  10. Naruszewicz M, Laniewska I, Millo B, Dluzniewski M. 2007. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 194: e179-184. https://doi.org/10.1016/j.atherosclerosis.2006.12.032
  11. Malik M, Zhao C, Schoene N, Guisti MM, Moyer MP, Magnuson BA. 2003. Anthocyanin-rich extract from Aronia meloncarpa E induces a cell cycle block in colon cancer but not normal colonic cells. Nutr Cancer 46: 186-196. https://doi.org/10.1207/S15327914NC4602_12
  12. Gasiorowski K, Szyba K, Brokos B, Kolaczynska B, Jankowiak-Wlodarczyk M, Oszmianski J. 1997. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett 119: 37-46. https://doi.org/10.1016/S0304-3835(97)00248-6
  13. Chen XY, Huan IM, Hwang LS, Ho CT, Li S, Lo CY. 2014. Anthocyanins in blackcurrant effectively prevent the formation of advanced glycation end products by trapping methylglyoxal. J Funct Foods 8: 259-268. https://doi.org/10.1016/j.jff.2014.03.025
  14. Xu Y, Cai F, Yu Z, Zhang L, Li X, Yang Y, Liu G. 2016. Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity. Food Chem 194: 650-658. https://doi.org/10.1016/j.foodchem.2015.08.061
  15. Bishayee A, Mbimba T, Thoppil RJ, Haznagy-Radnai E, Sipos P, Darvesh AS, Folkesson HG, Hohmann J. 2011. Anthocyanin-rich black currant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats. J Nutr Biochem 22: 1035-1046. https://doi.org/10.1016/j.jnutbio.2010.09.001
  16. Cyboran S, Bonarska-Kujawa D, Pruchnik H, Zylka R, Oszmianski J, Kleszczynska H. 2014. Phenolic content and biological activity of extracts of blackcurrant fruit and leaves. Food Res Int 65: 47-58. https://doi.org/10.1016/j.foodres.2014.05.037
  17. Orjuela-Palacio JM, Zamora MC, Lanari MC. 2014. Consumers' acceptance of a high-polyphenol yerba mate/black currant beverage: Effect of repeated tasting. Food Res Int 57: 26-33. https://doi.org/10.1016/j.foodres.2014.01.017
  18. Gonzalez B, Vogel H, Razmilic I, Wolfram E. 2015. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind Crops Prod 76: 158-165. https://doi.org/10.1016/j.indcrop.2015.06.038
  19. Ruiz A, Hermosín-Gutierrez I, Mardones C, Vergara C, Herlitz E, Vega M, Dorau C, Winterhalter P, von Baer D. 2010. Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from Southern Chile. J Agric Food Chem 58: 6081-6089. https://doi.org/10.1021/jf100173x
  20. Rojo LE, Ribnicky D, Logendra S, Poulev A, Rojas-Silva P, Kuhn P, Dun R, Grace MH, Lila MA, Raskin I. 2012. In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chem 131: 387- 396. https://doi.org/10.1016/j.foodchem.2011.08.066
  21. Schreckinger ME, Wang J, Yousef G, Lila MA, Gonzalez de Mejia E. 2010. Antioxidant capacity and in vitro inhibition of adipogenesis and inflammation by phenolic extracts of Vaccinium floribundum and Aristotelia chilensis. J Agric Food Chem 58: 8966-8976. https://doi.org/10.1021/jf100975m
  22. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964. https://doi.org/10.1021/jf0255937
  23. Lee YC, Hwang KH, Han DH, Kim SD. 1997. Compositions of Opuntia ficus-indica. Korean J Food Sci Technol 29: 847-853.
  24. AOAC International. 2005. AOAC official methods of analysis. 18th ed. Association of Official Analytical Chemists, Rockville, MD, USA. p 37-39.
  25. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  26. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  27. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  28. Wong JY, Chye FY. 2009. Antioxidant properties of selected tropical wild edible mushrooms. J Food Compos Anal 22: 269-277. https://doi.org/10.1016/j.jfca.2008.11.021
  29. Chang MI, Kim JY, Kim US, Baek SH. 2013. Antioxidant, tyrosinase inhibitory, and anti-proliferative activities of gochujang added with cheonggukjang powder made from sword bean. Korean J Food Sci Tehcnol 45: 221-226. https://doi.org/10.9721/KJFST.2013.45.2.221
  30. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338.
  31. Kalt W, Hanneken A, Milbury P, Tremblay F. 2010. Recent research on polyphenolics in vision and eye health. J Agric Food Chem 58: 4001-4007. https://doi.org/10.1021/jf903038r
  32. Yu MH, Im HG, Lee HJ, Ji YJ, Lee IS. 2006. Components and their antioxidative activities of methanol extracts from sarcocarp and seed of Zyzyphus jujuba var. inermis Rehder. Korean J Food Sci Technol 38: 128-134.
  33. Wangensteen H, Braunlich M, Nikolic V, Malterud KE, Slimestad R, Barsett H. 2014. Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: Antioxidant and enzyme inhibitory effects. J Funct Foods 7: 746-752. https://doi.org/10.1016/j.jff.2014.02.006
  34. Rodríguez K, Ah-Hen KS, Vega-Galvez A, Vasquez V, Quispe-Fuentes I, Rojas P, Lemus-Mondaca R. 2016. Changes in bioactive components and antioxidant capacity of maqui, Aristotelia chilensis [Mol] Stuntz, berries during drying. LWT - Food Sci Technol 65: 537-542. https://doi.org/10.1016/j.lwt.2015.08.050
  35. Fredes C, Montenegro G, Zoffoli JP, Santander F, Robert P. 2014. Comparison of the total phenolic content, total anthocyanin content and antioxidant activity of polyphenol-rich fruits grown in Chile. Cien Inv Agr 41: 49-60.
  36. Rubilar M, Jara C, Poo Y, Acevedo F, Gutierrez C, Sineiro J, Shene C. 2011. Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): sources of antioxidant compounds and $\alpha$-glucosidase/$\alpha$-amylase inhibitors. J Agric Food Chem 59: 1630-1637. https://doi.org/10.1021/jf103461k
  37. Gu GS, Kim IH, Jeong CH, Kim DC, Jang CW, Kim YS, Lee KY, Shim KH. 2014. Nutrition components and antioxidative activities of sweet dark cherry (Prunus avium L.) fruits. J Agric Life Sci 48: 151-161.
  38. Bordonaba JG, Crespo P, Terry LA. 2011. A new acetonitrile-free mobile phase for HPLC-DAD determination of individual anthocyanins in blackcurrant and strawberry fruits: A comparison and validation study. Food Chem 129: 1265-1273. https://doi.org/10.1016/j.foodchem.2010.09.114
  39. Woodward G, Kroon P, Cassidy A, Kay C. 2009. Anthocya nin stability and recovery: implications for the analysis of clinical and experimental samples. J Agric Food Chem 57: 5271-5278. https://doi.org/10.1021/jf900602b
  40. Kim MJ, Park E. 2011. Feature analysis of different in vitro antioxidant capacity assays and their application to fruit and vegetable samples. J Korean Soc Food Sci Nutr 40: 1053-1062. https://doi.org/10.3746/jkfn.2011.40.7.1053
  41. Lee SY, Hwang EJ, Kim GH, Choi YB, Lim CY, Kim SM. 2005. Antifungal and antioxidant activities of extracts from leaves and flowers of Camellia japonica L. Korean J Med Crop Sci 13: 93-100.
  42. Fredes C, Montenegro G, Zoffoli JP, Gomez M, Robert P. 2012. Polyphenol content and antioxidant activity of maqui (Aristotelia chilensis Molina Stuntz) during fruit development and maturation in Central Chile. Chilean J Agric Res 72: 582-588. https://doi.org/10.4067/S0718-58392012000400019
  43. Girones-Vilaplana A, Baenas N, Villano D, Speisky H, Garcia-Viguera C, Moreno DA. 2014. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J Funct Foods 7: 599-608. https://doi.org/10.1016/j.jff.2013.12.025
  44. Terpinc P, Ceh B, Ulrih NP, Abramovic H. 2012. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind Crops Prod 39: 210-217. https://doi.org/10.1016/j.indcrop.2012.02.023
  45. Chung HJ. 2014. Comparison of total polyphenols, total flavonoids, and biological activities of black chokeberry and blueberry cultivated in Korea. J Korean Soc Food Sci Nutr 43: 1349-1356. https://doi.org/10.3746/jkfn.2014.43.9.1349
  46. Cho EJ, Ju HM, Jeong CH, Eom SH, Heo HJ, Kim DO. 2011. Effect of phenolic extract of dry leaves of Lespedeza cuneata G. Don on antioxidant capacity and tyrosinase inhibition. Kor J Hort Sci Technol 29: 358-365.
  47. Park HM. 2014. Physiological activities of Aronia melanocarpa extracts on extraction solvents. Korean J Food Preserv 21: 718-726. https://doi.org/10.11002/kjfp.2014.21.5.718
  48. Jeong CH, Nam EK, Shim KH. 2006. Antioxidative activities and nitrate scavenging activity in different parts of Erigeron annuus. J Agric Life Sci 40: 13-29.

Cited by

  1. The quality characteristics of aronia by cultivation region vol.25, pp.7, 2018, https://doi.org/10.11002/kjfp.2018.25.7.804
  2. 블랙커런트 요구르트 첨가 드레싱의 품질특성 및 항산화성 vol.25, pp.1, 2016, https://doi.org/10.11002/kjfp.2018.25.1.71
  3. 블랙커런트 분말 첨가 젤리의 품질특성 및 항산화 활성 vol.24, pp.3, 2016, https://doi.org/10.20878/cshr.2018.24.3.011
  4. 아로니아 비가식 부위로부터 기능성 바이오융복합 소재 개발을 위한 폴리페놀의 추출 공정 최적화 vol.11, pp.2, 2016, https://doi.org/10.15207/jkcs.2020.11.2.085
  5. 몇 가지 과일과 혼합한 멜론잼의 품질 특성 vol.33, pp.2, 2016, https://doi.org/10.9799/ksfan.2020.33.2.159
  6. 마키베리 추출물이 정상 설치류의 혈중지질과 간기능에 미치는 영향 vol.30, pp.9, 2020, https://doi.org/10.5352/jls.2020.30.9.791
  7. Analysis of the Effective Components and Antioxidant Activity of Korean Black Currant (Ribes nigrum L.) Extracts vol.31, pp.2, 2016, https://doi.org/10.17495/easdl.2021.4.31.2.114
  8. 왕까마중(Solanum nigrum L.) 열매 분말의 추출 용매에 따른 항산화 및 항균 활성 vol.34, pp.2, 2016, https://doi.org/10.9799/ksfan.2021.34.2.137
  9. Study on the Quality Characteristics of Aronia Cheong Prepared with Different Sugars vol.31, pp.4, 2016, https://doi.org/10.17495/easdl.2021.8.31.4.226
  10. Characterization of electrospun Aronia melanocarpa fruit extracts loaded polyurethane nanoweb vol.8, pp.1, 2016, https://doi.org/10.1186/s40691-021-00250-z