DOI QR코드

DOI QR Code

Effect of Acacia catechu Extract on 3T3-L1 Preadipocyte Differentiation

지방세포의 분화에 미치는 Acacia catechu 추출물의 항비만 효과

  • Received : 2016.04.25
  • Accepted : 2016.06.10
  • Published : 2016.08.31

Abstract

The purpose of this study was to investigate the effects of catechu water extract on adipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated with adipogenic regents by incubation for 9 days in the absence or presence of catechu extract ranging from $1{\sim}200{\mu}g/mL$. The effect of catechu extracts on cell proliferation of 3T3-L1 preadipocytes was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of catechu extracts on 3T3-L1 differentiation was examined by measuring intracellular lipid droplet and triglyceride contents. These results were obtained from preadipocyte proliferation and adipocyte differentiation of 3T3-L1. Catechu extracts inhibited lipid accumulation and remarkably decreased triglyceride contents in 3T3-L1 preadipocytes at a concentration showing no cytotoxicity. The anti-adipogenic effects of catechu appeared to be mediated by significant down-regulation of expression of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element-binding protein 1c proteins apart from expression of hormone-sensitive lipase. We suggest that catechu extracts significantly inhibit adipogenesis and can be used for regulation of obesity.

지방전구세포가 지방세포로 분화하는 과정에서 아선약 추출물의 영향을 확인하고자 분화유도제를 처리하여 3T3-L1 세포에서 아선약의 세포독성, 지방축적 억제 효과, triglyceride 억제 효능, 지방분화 관련 단백질들의 발현을 확인하였다. 아선약 추출물을 최대 $200{\mu}g/mL$ 농도까지 세포에 처리하여 세포독성을 측정한 결과 아선약 추출물은 $100{\mu}g/mL$ 이하의 농도에서는 세포에 독성을 유발하지 않는 것으로 확인되었다. Oil red-O 염색을 통해 지방축적률을 확인한 결과 아선약 추출물에 의한 농도 의존적인 지방축적의 감소 효과가 있었다. Triglyceride 생성량 역시 농도 의존적인 감소가 확인되었다. 아선약에 의한 지방분화의 감소가 어떠한 기작에 의해 조절되는지 확인하고자 관련 지표단백질인 $PPAR{\gamma}$와 SREBF-1 그리고 $C/EBP{\alpha}$의 발현량 변화를 확인해본 결과 $100{\mu}g/mL$ 농도에서 유의성 있게 감소하였다. 이상의 결과를 종합해볼 때 아선약 추출물은 지방세포의 분화억제와 분화된 지방세포의 지방축적을 저해함으로써 항비만 효과를 유도할 것으로 기대된다.

Keywords

References

  1. Malterud K, Tonstad S. 2009. Preventing obesity: Challenges and pitfalls for health promotion. Patient Educ Couns 76: 254-259. https://doi.org/10.1016/j.pec.2008.12.012
  2. Dewulf EM, Cani PD, Neyrinck AM, Possemiers S, Van Holle A, Muccioli GG, Deldicque L, Bindels LB, Pachikian BD, Sohet FM, Mignolet E, Francaux M, Larondelle Y, Delzenne NM. 2011. Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and $PPAR{\gamma}$-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 22: 712-722. https://doi.org/10.1016/j.jnutbio.2010.05.009
  3. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I. 2007. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56: 901-911. https://doi.org/10.2337/db06-0911
  4. Bays H, Blonde L, Rosenson R. 2006. Adiposopathy: how do diet, exercise and weight loss drug therapies improve metabolic disease in overweight patients?. Expert Rev Cardiovasc Ther 4: 871-895. https://doi.org/10.1586/14779072.4.6.871
  5. Ailhaud G, Grimaldi P, Negrel R. 1992. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 12: 207-233. https://doi.org/10.1146/annurev.nu.12.070192.001231
  6. Haugen F, Zahid N, Dalen KT, Hollung K, Nebb HI, Drevon CA. 2005. Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. J Lipid Res 46: 143-153. https://doi.org/10.1194/jlr.M400348-JLR200
  7. Tenney R, Stansfield K, Pekala PH. 2005. Interleukin 11 signaling in 3T3-L1 adipocytes. J Cell Physiol 202: 160-166. https://doi.org/10.1002/jcp.20100
  8. Guo X, Liao K. 2000. Analysis of gene expression profile during 3T3-L1 preadipocyte differentiation. Gene 251: 45-53. https://doi.org/10.1016/S0378-1119(00)00192-X
  9. MacDougald OA, Hwang CS, Fan H, Lane MD. 1995. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci U S A 92: 9034-9037. https://doi.org/10.1073/pnas.92.20.9034
  10. Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ, Li X. 2008. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci U S A 105: 2889-2894. https://doi.org/10.1073/pnas.0800178105
  11. Farmer SR. 2006. Transcriptional control of adipocyte formation. Cell Metab 4: 263-273. https://doi.org/10.1016/j.cmet.2006.07.001
  12. Rosen ED, MacDougald OA. 2006. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7: 885-896. https://doi.org/10.1038/nrm2066
  13. Nam H, Kim JK, Jung H, Suh JG. 2014. Anti-obesity effects of the stem bark of Japanese horse chestnut (Aesculus turbinate) in 3T3-L1 preadipocytes. Food Sci Biotechnol 23: 289-292. https://doi.org/10.1007/s10068-014-0040-5
  14. Ntambi JM, Kim YC. 2000. Adipocyte differentiation and gene expression. J Nutr 130: 3122S-3126S. https://doi.org/10.1093/jn/130.12.3122S
  15. Zhao J, Sun XB, Ye F, Tian WX. 2011. Suppression of fatty acid synthase, differentiation and lipid accumulation in adipocytes by curcumin. Mol Cell Biochem 351: 19-28. https://doi.org/10.1007/s11010-010-0707-z
  16. Jeon HJ, Kwon HJ. 2014. Antioxidant effects and functional evaluation of Gynura procumbens extract as a collaboration material for cosmetics and functional food. Kor J Aesthet Cosmetol 12: 499-507.
  17. Bhandare AM, Kshirsagar AD, Vyawahare NS, Hadambar AA, Thorve VS. 2010. Potential analgesic, anti-inflammatory and antioxidant activities of hydroalcoholic extract of Areca catechu L. nut. Food Chem Toxicol 48: 3412-3417. https://doi.org/10.1016/j.fct.2010.09.013
  18. Rage N, Dahanukar S, Karandikar SM. 1984. Hepatoprotective effect of cyanidanol against carbon tetrachloride induced liver damage. Indian Drugs 22: 556-560.
  19. Singh KN, Mittal RK, Barthwal KC. 1976. Hypoglycaemic activity of Acacia catechu, Acacia suma, and Albizzia odoratissima seed diets in normal albino rats. Indian J Med Res 64: 754-757.
  20. Ray DK, Sharatchandra KH, Thokchom IS. 2006. Antipyretic, antidiarrheal, hypoglycemic and hepatoprotective activities of ethyl acetate extract of Acacia catechu Willd. in albino rats. Indian J Pharm 38: 408-413. https://doi.org/10.4103/0253-7613.28207
  21. Jayasekhar P, Mohanan PV, Rathinam K. 1997. Hepatoprotective activity of ethyl acetate extract of Acacia catechu. Indian J Pharm 29: 426-428.
  22. Wang YH, Wang WY, Chang CC, Liou KT, Sung YJ, Liao JF, Chen CF, Chang S, Hou YC, Chou YC, Shen YC. 2006. Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation. J Biomed Sci 13: 127-141. https://doi.org/10.1007/s11373-005-9031-0
  23. Wallis TE. 2005. Text book of pharmacognosy. 5th ed. CBS Publishers and Distributors, New Delhi, India. p 461-463.
  24. Wang CK, Lee WH, Peng CH. 1997. Contents of phenolics and alkaloids in Areca catechu Linn. during maturation. J Agric Food Chem 45: 1185-1188. https://doi.org/10.1021/jf960547q
  25. Ramadan NM, Buchanan TM. 2006. New and future migraine therapy. Pharmacol Ther 112: 199-212. https://doi.org/10.1016/j.pharmthera.2005.04.010
  26. Cowan MM. 1999. Plant products as antimicrobial agents. Clin Microbiol Rev 12: 564-582.
  27. Hwang CR, Tak HM, Kang MJ, Suh HJ, Kwon OO, Shin JH. 2014. Antioxidant and antiobesity activity of natural color resources. J Life Sci 24: 633-641. https://doi.org/10.5352/JLS.2014.24.6.633
  28. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964. https://doi.org/10.1021/jf0255937
  29. Lee JM, Son ES, Oh SS, Han DS. 2001. Contents of total flavonoid and biological activities of edible plants. Korean J Dietary Culture 16: 504-514.
  30. Kumar S, Kumar D, Manjusha, Saroha K, Singh N, Vashishta B. 2008. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharm 58: 215-220.
  31. Panickar KS, Anderson RA. 2011. Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death and brain edema in cerebral ischemia. Int J Mol Sci 12: 8181-8207. https://doi.org/10.3390/ijms12118181
  32. Twentyman PR, Luscombe M. 1987. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56: 279-285. https://doi.org/10.1038/bjc.1987.190
  33. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  34. Dif N, Euthine V, Gonnet E, Laville M, Vidal H, Lefai E. 2006. Insulin activates human sterol-regulatory-elementbinding protein-1c (SREBP-1c) promoter through SRE motifs. Biochem J 400: 179-188. https://doi.org/10.1042/BJ20060499
  35. Hwang CR, Kang MJ, Shim HJ, Suh HJ, Kwon OO, Shin JH. 2015. Antioxidant and antiobesity activity of various color resources extracted from natural plants. J Korean Soc Food Sci Nutr 44: 165-172. https://doi.org/10.3746/jkfn.2015.44.2.165
  36. Manickam E, Sinclair AJ, Cameron-Smith D. 2010. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes. Lipids Health Dis 9: 57. https://doi.org/10.1186/1476-511X-9-57
  37. Kim NS, Shon MS, Kim GN, Hwang YI. 2014. Anti-obese and antioxidant activities of Spica prunellae extract in 3T3-L1 and HepG2 cells. Food Eng Prog 18: 413-418. https://doi.org/10.13050/foodengprog.2014.18.4.413
  38. Ahmadian M, Wang Y, Sul HS. 2010. Lipolysis in adipocytes. Int J Biochem Cell Biol 42: 555-559. https://doi.org/10.1016/j.biocel.2009.12.009
  39. Labreuche J, Touboul PJ, Amarenco P. 2009. Plasma triglyceride levels and risk of stroke and carotid atherosclerosis: a systematic review of the epidemiological studies. Atherosclerosis 203: 331-345. https://doi.org/10.1016/j.atherosclerosis.2008.08.040
  40. Lafontan M, Langin D. 2009. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48: 275-297. https://doi.org/10.1016/j.plipres.2009.05.001
  41. Kim HJ, Lee YM, Kim YH, Won SI, Choi SA, Choi SW. 2009. Inhibition of adipogenesis in 3T3-L1 adipocytes with Magnolia officinalis extracts. J Soc Cosmet Scientists Korea 35: 117-123.
  42. Cha SY, Jang JY, Lee YH, Lee G, Lee HJ, Hwang KT, Kim Y, Jun W, Lee J. 2010. Lipolytic effect of methanol extracts from Luffa cylindrica in mature 3T3-L1 adipocytes. J Korean Soc Food Sci Nutr 39: 813-819. https://doi.org/10.3746/jkfn.2010.39.6.813
  43. Cornelius P, MacDougald OA, Lane MD. 1994. Regulation of adipocyte development. Annu Rev Nutr 14: 99-129. https://doi.org/10.1146/annurev.nu.14.070194.000531
  44. Lim Y, Shin JY, Kim H, Baek GH, Yu KW, Jeong HS, Lee J. 2014. Anti-adipogenic effect of fermented coffee with Monascus ruber mycelium by solid-state culture of green coffee beans. J Korean Soc Food Sci Nutr 43: 624-629. https://doi.org/10.3746/jkfn.2014.43.4.624
  45. Lay SL, Lefrere I, Trautwein C, Dugail I, Krief S. 2002. Insulin and sterol-regulatory element-binding protein-1c (SREBP-1c) regulation of gene expression in 3T3-L1 adipocytes. J Biol Chem 277: 35625-35634. https://doi.org/10.1074/jbc.M203913200

Cited by

  1. 지방분화가 유도된 3T3-L1 세포와 고지방식이로 유도된 마우스에서 보리순 물추출물의 항비만 효과 vol.25, pp.6, 2016, https://doi.org/10.7783/kjmcs.2017.25.6.367