DOI QR코드

DOI QR Code

영역기반 지형 험준도 지수를 이용한 달착륙선의 일괄처리방식 지형상대항법 성능분석

Performance Analysis of Batch Process Terrain Relative Navigation Using Area based Terrain Roughness Index for Lunar Lander

  • Ku, Pyung-Mo (Department of Mechanical and Aerospace Engineering/ASRI Seoul National University) ;
  • Park, Young-Bum (Department of Mechanical and Aerospace Engineering/ASRI Seoul National University) ;
  • Park, Chan-Gook (Department of Mechanical and Aerospace Engineering/ASRI Seoul National University)
  • 투고 : 2016.02.05
  • 심사 : 2016.06.29
  • 발행 : 2016.07.01

초록

지형상대항법은 측정된 지형고도와 DEM(Digital Elevation Map)의 지형고도의 비교를 통해 위치보정이 이루어지는 시스템이다. 하지만 지형상대항법은 언덕과 같은 반복되는 지형과 같이 측정된 지형고도 프로파일과 후보 지형고도 프로파일이 유사할 때 다른 지형으로 오보정을 유발 할 수 있는 단점을 가지고 있어 항법 성능이 떨어지는 것으로 알려져 있다. 본 논문에서는 이러한 단점을 극복하기 위해 관심영역 안에 주변 지형의 유사한 정도를 판단하는 영역기반 지형 기울기 험준도 지수를 적용하였고[11], 영역기반 지형 곡률 험준도 지수를 제안하였다. 제안한 지형 험준도 지수의 성능 검증을 위하여 기존의 궤적기반 지형 험준도 지수와 영역기반 지형 험준도 지수를 달착륙선의 지형상대항법에 적용한 시뮬레이션을 수행하였다. 그 결과, 기존의 궤적기반 지형 험준도 지수를 고려하였을 때 보다 영역기반 지형 험준도 지수를 고려하였을 때 지형상대항법 성능이 개선됨을 확인하였다.

Batch process TRN(Terrain Relative Navigation) using an altimeter is a technique to correct position by correlating a series of periodically measured terrain height profile and terrain height candidate profile of the DEM(Digital Elevation Map). However, it is generally known that the performance of TRN is degraded when measured terrain height profile and terrain height candidate profiles of the DEM are similar at hill or repetitive terrain. In this paper, area based terrain slope roughness index[11] is applied and area based terrain curvature roughness index which can detect similarity of terrain in ROI(Region Of Interest) is proposed to overcome this problem. Applying terrain roughness indexes to terrain relative navigation system of lunar lander, it is shown that TRN using area based terrain roughness results in improved performance compared to conventional trajectory based method through simulation.

키워드

참고문헌

  1. T. Brady, J. Schwartz, "ALHAT system architecture and operational concept," IEEE Aerospace Conference, Big sky, Montana,2007.
  2. Johnson, Andrew E., and James F. Montgomery. "Overview of terrain relative navigation approaches for precise lunar landing." Aerospace Conference, IEEE, 2008.
  3. Johnson, Andrew, and Tonislav Ivanov. "Analysis and testing of a LIDAR-based approach to terrain relative navigation for precise lunar landing." Proc. AIAA Guidance, Navigation, and Control Conference. 2011.
  4. Siouris, George. M., Missile Guidance and Control Systems, Springer-Verlag, New York, pp. 551-576, 2003.
  5. Hollowell, Jeff. "Heli/SITAN: A terrain referenced navigation algorithm for helicopters." Position Location and Navigation Symposium, 1990. Record. The 1990's-A Decade of Excellence in the Navigation Sciences. IEEE PLANS'90., IEEE. IEEE, 1990.
  6. S.H. Jeong, et al, "A performance analysis of terrain-aided navigation(TAN) algorithms using interferometric radar altimeter", Journal of The Korean Society for Aeronautical and Space Sciences, 40(4), 2012, 285-291. https://doi.org/10.5139/JKSAS.2012.40.4.285
  7. S.H. Mok, H.C. Bang, M.G. Yu, "A Performance Comparison of Nonlinear Kalman Filtering Based Terrain Referenced Navigation", Journal of The Korean Society for Aeronautical and Space Sciences, 40(2), 2012, 108-117 https://doi.org/10.5139/JKSAS.2012.40.2.108
  8. Henley, A. J. "Terrain aided navigation: current status, techniques for flat terrain and reference data requirements." Position Location and Navigation Symposium, 1990. Record. The 1990's-A Decade of Excellence in the Navigation Sciences. IEEE PLANS'90., IEEE. IEEE, 1990.
  9. Ekütekin, Vedat. "Navigation and control studies on cruise missiles", Ph.D. Dissertion, MIDDLE. EAST TECHNICAL UNIVERSITY, 2007.
  10. Y.M. Yoo, et al, "Profile-based TRN/INS integration algorithm considering terrain roughness." Journal of Institute of Control, Robotics and Systems, Vol.19, No.2, pp. 131-139, 2013. https://doi.org/10.5302/J.ICROS.2013.19.2.131
  11. Y.M. Yoo, S.M. Lee, C.G. Park, "New Terrain Roughness Index for Update of Profile Based TRN," Proceedings of the ION 2013 Pacific PNT Meeting, Honolulu, Hawaii, April 2013, pp. 381-387.
  12. J. Metzger, O. Meister, G. F. Trommer, F.Tumbragel, T. Taddiken, "Adaptations of a comparison technique for terrain navigation," Aerospace Science and Technology, Vol. 9, No. 6, pp. 553-560, 2005. https://doi.org/10.1016/j.ast.2005.05.005
  13. P.M. Ku, Y.B. Park, C.G. Park. "A Study on Batch Process of Terrain Relative Navigation Applying Mean Removal Technique to Large Initial Altitude Error of Lunar Lander." The Korean Society For Aeronautical and Space Sciences, KSAS 2014 Fall Conference, 2014.
  14. Roberts, Andy. "Curvature attributes and their application to 3 D interpreted horizons." First break 19.2 (2001): 85-100. https://doi.org/10.1046/j.0263-5046.2001.00142.x
  15. Geller, David K., and Daniel Christensen. "Linear covariance analysis for powered lunar descent and landing." Journal of Spacecraft and Rockets 46.6: 1231-1248, 2009. https://doi.org/10.2514/1.38641