DOI QR코드

DOI QR Code

Systematic Analysis of the Anticancer Agent Taxol-Producing Capacity in Colletotrichum Species and Use of the Species for Taxol Production

  • Choi, Jinhee (Institute of Biotechnology, Yeungnam University) ;
  • Park, Jae Gyu (Pohang Center for Evaluation Biomaterials (POCEB), Pohang Technopark Foundation) ;
  • Ali, Md. Sarafat (Institute of Biotechnology, Yeungnam University) ;
  • Choi, Seong-Jin (Department of Biotechnology, Catholic University of Daegu) ;
  • Baek, Kwang-Hyun (Department of Biotechnology, Yeungnam University)
  • Received : 2016.04.20
  • Accepted : 2016.06.23
  • Published : 2016.06.30

Abstract

Paclitaxel (taxol) has long been used as a potent anticancer agent for the treatment of many cancers. Ever since the fungal species Taxomyces andreanae was first shown to produce taxol in 1993, many endophytic fungal species have been recognized as taxol accumulators. In this study, we analyzed the taxol-producing capacity of different Colletotrichum spp. to determine the distribution of a taxol biosynthetic gene within this genus. Distribution of the taxadiene synthase (TS) gene, which cyclizes geranylgeranyl diphosphate to produce taxadiene, was analyzed in 12 Colletotrichum spp., of which 8 were found to contain the unique skeletal core structure of paclitaxel. However, distribution of the gene was not limited to closely related species. The production of taxol by Colletotrichum dematium, which causes pepper anthracnose, depended on the method in which the fungus was stored, with the highest production being in samples stored under mineral oil. Based on its distribution among Colletotrichum spp., the TS gene was either integrated into or deleted from the bacterial genome in a species-specific manner. In addition to their taxol-producing capacity, the simple genome structure and easy gene manipulation of these endophytic fungal species make them valuable resources for identifying genes in the taxol biosynthetic pathway.

Keywords

References

  1. Charles AG, Han TY, Liu YY, Hansen N, Giuliano AE, Cabot MC. Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemother Pharmacol 2001;47:444-50. https://doi.org/10.1007/s002800000265
  2. Holton RA, Kim HB, Somoza C, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S, Nadizadeh H, et al. First total synthesis of taxol. 2. Completion of the C and D rings. J Am Chem Soc 1994;116:1599-600. https://doi.org/10.1021/ja00083a067
  3. Castor TP, Tyler TA. Determination of taxol in Taxus media needles in the presence of interfering components. J Liq Chromatogr 1993;16:723-31. https://doi.org/10.1080/10826079308019559
  4. Exposito O, Bonfill M, Onrubia M, Jane A, Moyano E, Cusido RM, Palazon J, Pinol MT. Effect of taxol feeding on taxol and related taxane production in Taxus baccata suspension cultures. New Biotechnol 2008;25:252-9.
  5. Kim JA, Baek KH, Son YM, Son SH, Shin H. Hairy root cultures of Taxus cuspidata for enhanced production of paclitaxel. J Korean Soc Appl Biol Chem 2009;52:144-50. https://doi.org/10.3839/jksabc.2009.027
  6. Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993;260:214-6. https://doi.org/10.1126/science.8097061
  7. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 1996;142(Pt 2):435-40. https://doi.org/10.1099/13500872-142-2-435
  8. Shrestha K, Strobel GA, Shrivastava SP, Gewali MB. Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepal. Planta Med 2001;67:374-6. https://doi.org/10.1055/s-2001-14307
  9. Guo BH, Wang YC, Zhou XW, Hu K, Tan F, Miao ZQ, Tang KX. An endophytic taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr J Biotechnol 2006;5:875-7.
  10. Gangadevi V, Muthumary J. Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. Mycol Balc 2008;5:1-4.
  11. Zhou X, Zhu H, Liu L, Lin J, Tang K. A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 2010;86:1707-17. https://doi.org/10.1007/s00253-010-2546-y
  12. Perfect SE, Hughes HB, O’Connell RJ, Green JR. Colletotrichum: a model genus for studies on pathology and fungal-plant interactions. Fungal Genet Biol 1999;27:186-98. https://doi.org/10.1006/fgbi.1999.1143
  13. Freeman S, Katan T, Shabi E. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis 1998;82:596-605. https://doi.org/10.1094/PDIS.1998.82.6.596
  14. Hong JK, Hwang BK, Kim CH. Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-${\beta}$-amino-n-butyric acid. J Phytopathol 1999;147:193-8. https://doi.org/10.1046/j.1439-0434.1999.147004193.x
  15. Ji C, Kúc J. Non-host resistance to Colletotrichum lagenarium in pumpkin and squash is not primarily associated with ${\beta}$-1,3-glucanase and chitinase activities. Physiol Mol Plant Pathol 1997;50:361-70. https://doi.org/10.1006/pmpp.1997.0091
  16. Irieda H, Maeda H, Akiyama K, Hagiwara A, Saitoh H, Uemura A, Terauchi R, Takano Y. Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic. Plant Cell 2014;26:2265-81. https://doi.org/10.1105/tpc.113.120600
  17. Subhani MN, Chaudhry MA, Khaliq A, Muhammad F. Efficacy of various fungicides against sugarcane red rot (Colletotrichum falcatum). Int J Agric Biol 2008;10:725-7.
  18. Ye F, Albarouki E, Lingam B, Deising HB, von Wiren N. An adequate Fe nutritional status of maize suppresses infection and biotrophic growth of Colletotrichum graminicola. Physiol Plant 2014;151:280-92. https://doi.org/10.1111/ppl.12166
  19. Narusaka M, Abe H, Kobayashi M, Kubo Y, Narusaka Y. Comparative analysis of expression profiles of counterpart gene sets between Brassica rapa and Arabidopsis thaliana during fungal pathogen Colletotrichum higginsianum infection. Plant Biotechnol 2006;23:503-8. https://doi.org/10.5511/plantbiotechnology.23.503
  20. Khan M, Sinclair JB. Pathogenicity of sclerotia- and nonsclerotiaforming isolates of Colletotrichum truncatum on soybean plants and roots. Phytopathology 1992;82:314-9. https://doi.org/10.1094/Phyto-82-314
  21. Chi MH, Park SY, Lee YH. A quick and safe method for fungal DNA extraction. Plant Pathol J 2009;25:108-11. https://doi.org/10.5423/PPJ.2009.25.1.108
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
  23. Walji AM, MacMillan DW. Strategies to bypass the taxol problem: enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexity. Synlett 2007;10:1477-89.
  24. Wildung MR, Croteau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 1996;271:9201-4. https://doi.org/10.1074/jbc.271.16.9201
  25. Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ. Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 1996;142(Pt 8):2223-6. https://doi.org/10.1099/13500872-142-8-2223
  26. Nithya K, Muthumary J. Growth studies of Colletotrichum gloeosporioides (Penz.) Sacc.: a taxol producing endophytic fungus from Plumeria acutifolia. Indian J Sci Technol 2009;2:14-9.
  27. Senthilkumar N, Murugesan S, Mohan V, Muthumary J. Taxol producing fungal endophyte, Colletotrichum gleospoiroides (Penz.) from Tectona grandis L. Curr Biotica 2013;7:8-15.
  28. Kumaran RS, Jung H, Kim HJ. In vitro screening of taxol, an anticancer drug produced by the fungus, Colletotrichum capsici. Eng Life Sci 2011;11:264-71. https://doi.org/10.1002/elsc.201000119
  29. Ahn IP, Uhm KH, Kim S, Lee YH. Signaling pathways involved in preinfection development of Colletotrichum gloeosporioides, C. coccodes, and C. dematium pathogenic on red pepper. Physiol Mol Plant Pathol 2003;63:281-9. https://doi.org/10.1016/j.pmpp.2004.01.001
  30. Machowicz-Stefaniak Z. Occurrence and characterization of Colletotrichum dematium (Fr.) Grove. Pol J Microbiol 2010;59:191-200.
  31. Smith JE, Korsten L, Aveling TA. Infection process of Colletotrichum dematium on cowpea stems. Mycol Res 1999;103:230-4 https://doi.org/10.1017/S0953756298006868
  32. Yoshida S, Shirata A. Survival of Colletotrichum dematium in soil and infected mulberry leaves. Plant Dis 1999;83:465-8. https://doi.org/10.1094/PDIS.1999.83.5.465
  33. Russo VM, Pappelis AJ. Observations of Colletotrichum dematium f. circinans on Allium cepa: halo formation and penetration of epidermal walls. Physiol Plant Pathol 1981;19:127-36. https://doi.org/10.1016/S0048-4059(81)80014-8
  34. Washington WS, Irvine G, Aldaoud R, DeAlwis S, Edwards J, Pascoe IG. First record of anthracnose of spinach caused by Colletotrichum dematium in Australia. Australas Plant Pathol 2006;35:89-91. https://doi.org/10.1071/AP05095
  35. Sato T, Muta T, Imamura Y, Nojima H, Moriwaki J, Yaguchi Y. Anthracnose of Japanese radish caused by Colletotrichum dematium. J Gen Plant Pathol 2005;71:380-3. https://doi.org/10.1007/s10327-005-0214-3
  36. Chitkara S, Singh T, Singh D. Histopathology of Colletotrichum dematium infected chilli seeds. Acta Bot Indica 1990;18:226-30.
  37. Shovan LR, Bhuiyan MK, Begum JA, Pervez Z. In vitro control of Colletotrichum dematium causing anthracnose of soybean by fungicides, plant extracts and Trichoderma harzianum. Int J Sustain Crop Prod 2008;3:10-7.
  38. Li JY, Sidhu RS, Ford EJ, Long DM, Hess WM, Strobel GA. The induction of taxol production in the endophytic fungus: Periconia sp from Torreya grandifolia. J Ind Microbiol Biotechnol 1998;20:259-64. https://doi.org/10.1038/sj.jim.2900521