DOI QR코드

DOI QR Code

Development of Empirical Correlation to Calculate Pool Boiling Heat Transfer Coefficient on Inclined Tube Surface

경사진 튜브 표면의 풀비등 열전달계수 계산을 위한 실험식 개발

  • Received : 2016.03.17
  • Accepted : 2016.05.23
  • Published : 2016.08.01

Abstract

A new empirical correlation was developed to identify the effect of an inclination angle on pool boiling heat transfer coefficient of a tube submerged in the saturated water at atmospheric pressure. Through the experiments and the survey of published results 431 data points were obtained and the nonlinear least square method was used as a regression technique. The heat flux of the tube($0{\sim}120kW/m^2$), inclination angle($0^{\circ}{\sim}90^{\circ}$), and the length divided by the diameter of a tube(18~42.52) were selected as major parameters. The newly developed correlation well predicts the experimental data within ${\pm}18%$, with some exceptions.

대기압 상태인 물의 내부에 설치된 튜브의 경사각이 풀비등 열전달계수에 미치는 영향을 확인하기 위하여 새로운 실험식을 개발하였다. 실험과 기존에 발표된 결과들에 대한 조사를 통하여 431개의 실험값을 결정하였으며, 회귀분석 기법으로 비선형 최소자승법을 사용하였다. 열유속($0{\sim}120kW/m^2$), 경사각($0^{\circ}{\sim}90^{\circ}$), 튜브 길이를 직경으로 나눈 값(18~42.52)을 주요 매개변수로 선정하였다. 새롭게 개발된 상관식은 약간의 예외를 제외하면 실험값을 ${\pm}18%$ 범위 내에서 잘 예측한다.

Keywords

References

  1. Kang, K. H., Kim, S., Bae, B. U., Cho, Y. J., Park, Y. S. and Yun, B. J., 2012, "Separate and Integral Effect Tests for Validation of Cooling and Operational Performance of the APR+ Passive Auxiliary Feedwater System," Nuclear Engineering and Technology, Vol. 44, pp. 597-610. https://doi.org/10.5516/NET.02.2012.710
  2. El-Genk, M. S. and Bostanci, H., 2003, "Saturation Boiling of HFE-7100 from a Copper Surface, Simulating a Microelectronic Chip," Int. J. Heat Mass Transfer, Vol. 46, pp. 1841-1854. https://doi.org/10.1016/S0017-9310(02)00489-1
  3. Kang, M.G., 2014, "Pool Boiling Heat Transfer on the Inside Surface of an Inclined Tube," JP Journal of Heat and Mass Transfer, Vol. 10, pp. 47-61.
  4. Stralen, S. J. D. and Sluyter, W. M., 1969, "Investigations on the Critical Heat Flux of Pure Liquids and Mixtures under Various Conditions," Int. J. Heat Mass Transfer, Vol. 12, pp. 1353-1384. https://doi.org/10.1016/0017-9310(69)90022-2
  5. Nishikawa, K., Fujita, Y., Uchida, S. and Ohta, H., 1984, "Effect of Surface Configuration on Nucleate Boiling Heat Transfer," Int. J. Heat Mass Transfer, Vol. 27, pp. 1559-1571. https://doi.org/10.1016/0017-9310(84)90268-0
  6. Jung, D. S., Venant, J. E. S. and Sousa, A. C. M., 1987, "Effects of Enhanced Surfaces and Surface Orientations on Nucleate and Film Boiling Heat Transfer in R-11," Int. J. Heat Mass Transfer, Vol. 30, pp. 2627-2639. https://doi.org/10.1016/0017-9310(87)90144-X
  7. Fujita, Y., Ohta, H., Uchida, S. and Nishikawa, K., 1988, "Nucleate Boiling Heat Transfer and Critical Heat Flux in Narrow Space between Rectangular Spaces," Int. J. Heat Mass Transfer, Vol. 31, pp. 229-239. https://doi.org/10.1016/0017-9310(88)90004-X
  8. Sateesh, G., Das, S. K. and Balakrishnan, A. R., 2009, "Experimental Studies on the Effect of Tube Inclination on Nucleate Pool Boiling," Heat Mass Transfer, Vol. 45, pp. 1493-1502. https://doi.org/10.1007/s00231-009-0522-9
  9. Narayan, G. P., Anoop, K. B., Sateesh, G. and Das, S. K., 2008, "Effect of Surface Orientation on Pool Boiling Heat Transfer on Nanoparticle Suspensions," Int. J. Multiphase Flow, Vol. 34, pp. 145-160. https://doi.org/10.1016/j.ijmultiphaseflow.2007.08.004
  10. Kang, M. G., 2010, "Pool Boiling Heat Transfer on the Tube Surface in an Inclined Annulus," Int. J. Heat Mass Transfer, Vol. 53, pp. 3326-3334. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.035
  11. Touhami, B., Abdelkader, A. and Mohamed, T., 2014, "Proposal for a Correlation Raising the Impact of the External Diameter of a Horizontal Tube During Pool Boiling," Int. J. Thermal Sciences, Vol. 84, pp. 293-299. https://doi.org/10.1016/j.ijthermalsci.2014.05.023
  12. Holman, H. W., 1997, Heat Transfer, 8th ed., McGraw-Hill.
  13. Coleman, H. W. and Steele, W. G., 1999, Experimentation and Uncertainty Analysis for Engineers, 2nd Ed., John Wiley & Sons.
  14. Kang, M. G., 2003, "Effects of Tube Inclination on Pool Boiling Heat Transfer," Nuclear Engineering and Design, Vol. 220, pp. 67-81. https://doi.org/10.1016/S0029-5493(02)00322-9
  15. Kang, M. G., 2008, "Effects of Tube Inclination on Saturated Nucleate Pool Boiling Heat Transfer," Trans. Korean Soc. Mech. Eng. B, Vol. 32, pp. 327-334.
  16. Rohsenow, W. M., 1952, "A Method of Correlating Heat-transfer Data for Surface Boiling of Liquids," ASME J. Heat Transfer, Vol. 74, pp. 969-976.
  17. Cornwell, K., Schuller, R. B. and Einarsson, J. G., 1982, "The Influence of Diameter on Nucleate Boiling Outside Tubes," Proc. of the 7th International Heat Transfer Conference, Munchen, Germany.
  18. Cooper, M. G., 1984, "Heat Flow Rates in Saturated Nucleate Pool Boiling - A Wide Ranging Examination Using Reduced Properties," Advances in Heat Transfer, Vol. 16, pp. 157-239. https://doi.org/10.1016/S0065-2717(08)70205-3