DOI QR코드

DOI QR Code

Immobilization of Homogeneous Catalyst on Functionalized Carbon Nanotube via 1,3-Dipolar Cycloaddition Reaction and its Ethylene Polymerization

1,3-Dipolar cycloaddition 반응을 통해 기능화된 carbon nanotube 표면 위에 균일계 촉매 담지 및 에틸렌 중합

  • Lee, Jeong Suk (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Se Young (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Jin Woo (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2016.02.23
  • Accepted : 2016.03.31
  • Published : 2016.08.01

Abstract

In this study, CNT functionalized with pyrrolidine ring via 1,3-dipolar cycloaddition reaction with various amino acid and aldehyde was synthesized. Metallocene was subsequently immobilized on the functionalized CNT and CNT/polyethylene composite was prepared via in-situ ethylene polymerization. The polymerization activities of metallocene supported on CNT functionalized with glycine and benzaldehyde (Gly+BA-CNT) were similar to those of metallocene supported on CNT functionalized with N-benzyloxycarbonylglycine and paraformaldehyde (Z-Gly+PFA-CNT) although its Zr content was lower than that of Z-Gly+PFA-CNT. In the case of metallocene supported on Z-Gly+PFA-CNT, the even distribution of active sites hindered the diffusion of ethylene monomer and cocatalyst MAO due to steric hindrance during ethylene polymerization. Compared to polyethylene produced from homogeneous metallocene catalysts, CNT/PE composites had a higher initial degradation temperature ($T_{onset}$) and maximum mass loss temperature ($T_{max}$). It suggests that pyrrolidine functionalized CNT is uniformly dispersed and strongly interacted with the PE matrix, enhancing the thermal stability of PE.

본 연구에서는 탄소나노튜브에 다양한 아미노산과 알데히드의 1,3-dipolar cycloaddition 반응을 통해 pyrrolidine 고리를 도입하여 기능화된 탄소나노튜브를 합성하였다. 기능화된 탄소나노튜브에 메탈로센 촉매를 담지하였고 in-situ 에틸렌 중합을 통해 탄소나노튜브/폴리에틸렌 복합체를 합성하였다. 글리신과 벤즈알데히드로 기능화된 탄소나노튜브(Gly+BA-CNT)에 담지된 메탈로센 촉매는 낮은 지르코늄 함량에도 불구하고 높은 지르코늄 함량을 나타내는 N-benzyloxycarbonylglycine과 파라포름알데히드로 기능화된 탄소나노튜브(Z-Gly+PFA-CNT)에 담지된 촉매와 유사한 중합 활성을 보였다. N-Benzyloxycarbonylglycine과 파라포름알데히드로 기능화된 탄소나노튜브(Z-Gly+PFA-CNT)에 담지된 메탈로센 촉매의 경우 촉매 활성점의 분포가 조밀하여 에틸렌 중합 시 활성점으로 에틸렌 모노머와 공촉매 MAO가 확산하는데 입체적 방해를 주기 때문이다. 균일계 메탈로센 촉매로 생성된 폴리에틸렌과 비교하여 표면 기능화된 탄소나노튜브에 메탈로센을 담지한 촉매로 생성된 CNT/PE 복합체는 높은 분해 개시 온도($T_{onset}$)와 최대 중량 감소 온도($T_{max}$)를 가진다. 이는 pyrrolidine 고리가 기능화된 CNT는 PE 매트릭스 내에 균일하게 분산되고 CNT와 고분자 간의 강한 상호작용으로 인해 열적 안정성이 향상된 것으로 판단된다.

Keywords

References

  1. Shanmugharaj, A. M., Bae, J. H., Lee, K. Y., Noh, W. H., Lee, S. H. and Ryu, S. H., "Physical and Chemical Characteristics of Multiwalled Carbon Nanotubes Functionalized with Aminosilane and its Influence on the Properties of Natural Rubber Composites," Compos. Sci. Technol., 67, 1813-1822(2007). https://doi.org/10.1016/j.compscitech.2006.10.021
  2. Coleman, J. N., Khan, U., Blau, W. J. and Gun'ko, Y. K., "Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube-polymer Composites," Carbon, 44, 1624-1652(2006). https://doi.org/10.1016/j.carbon.2006.02.038
  3. Ma, P.-C., Mo, S.-Y., Tang, B.-Z. and Kim, J.-K., "Dispersion, Interfacial Interaction and Re-agglomeration of Functionalized Carbon Nanotubes in Epoxy Composites," Carbon, 48, 1824-1834(2010). https://doi.org/10.1016/j.carbon.2010.01.028
  4. Ma, P.-C., Siddiqui, N. A., Marom, G. and Kim, J.-K., "Dispersion and Functionalization of Carbon Nanotubes for Polymer-based Nanocomposites: A Review," Composites Part A., 41, 1345-1367(2010). https://doi.org/10.1016/j.compositesa.2010.07.003
  5. Kim, D.W. and Kim, J. S., "Mechanical Properties of Carbon Nanotube/polyurethane Nanocomposites via PPG Dispersion with MWCNTs," Korean Chem. Eng. Res., 53, 703-708(2015). https://doi.org/10.9713/kcer.2015.53.6.703
  6. Araujo, R., Fernandes, F. M., Proenca, M. F., Silva, C. J. R. and Paiva, M. C., "The 1,3-dipolar Cycloaddition Reaction in the Functionalization of Carbon Nanofibers," J. Nanosci. Nanotechnol., 7, 3441-3445(2007). https://doi.org/10.1166/jnn.2007.815
  7. Denis, P. A. and Iribarne, F., "The 1,3 Dipolar Cycloaddition of Azomethine Ylides to Graphene, Single Wall Carbon Nanotubes, and C60," Int. J. Quantum Chem., 110, 1764-1771(2010).
  8. Araujo, R., Paiva, M. C., Proenca, M. F. and Silva, C. J. R., "Functionalization of Carbon Nanofibres by 1,3-dipolar Cycloaddition Reactions and Its Effect on Composite Properties," Compos. Sci. Technol., 67, 806-810(2007). https://doi.org/10.1016/j.compscitech.2006.01.040
  9. Paiva, M. C., Novais, R. M., Araujo, R. F. Pederson, K. K., Proenca, M. F. Silva, C. J. R., Costa, C. M. and Lanceros-Mendez, S., "Organic Functionalization of Carbon Nanofibers for Composite Applications," Polym. Composite., 31, 369-379(2010).
  10. Zewde, B., Pitliya, P., Gaskell, K. J. and Raghavan, D., "Structure-property Relationship of Substituted Pyrrolidine Functionalized CNT Epoxy Nanocomposite," J. Appl. Polym. Sci., 132, 42284-42293(2015).
  11. Paiva, M. C., Simon, F., Novais, R. M., Ferreira, T., Proenca, M. F., Xu, W. and Besenbacher, F., "Controlled Functionalization of Carbon Nanotubes by a Solvent-free Multicomponent Approach," ACSNANO, 4, 7379-7386(2010).
  12. Xiong, J., Zheng, Z., Qin, X., Li, M., Li, H. and Wang, X., "The Thermal and Mechanical Properties of a Polyurethane/multi-walled Carbon Nanotube Composite," Carbon, 44, 2701-2707(2006). https://doi.org/10.1016/j.carbon.2006.04.005
  13. Al-Saleh, H. M. and Sundararaj, U., "A Review of Vapor Grown Carbon Nanofiber/polymer Conductive Composites," Carbon, 47, 2-22(2009). https://doi.org/10.1016/j.carbon.2008.09.039
  14. Gui, M. M., Yap, Y. X., Chai, S. and Mohamed, A. R., "Multi-walled Carbon Nanotubes Modified with (3-aminopropyl)triethoxysilane for Effective Carbon Dioxide Adsorption," Int. J. Greenh. Gas Con., 14, 65-73(2013). https://doi.org/10.1016/j.ijggc.2013.01.004