DOI QR코드

DOI QR Code

ON n-*-PARANORMAL OPERATORS

  • Rashid, Mohammad H.M. (Department of Mathematics Faculty of Science P.O. Box(7) Mu'tah University)
  • Received : 2015.10.27
  • Published : 2016.07.31

Abstract

A Hilbert space operator $T{\in}{\mathfrak{B}}(\mathfrak{H})$ is said to be n-*-paranormal, $T{\in}C(n)$ for short, if ${\parallel}T^*x{\parallel}^n{\leq}{\parallel}T^nx{\parallel}\;{\parallel}x{\parallel}^{n-1}$ for all $x{\in}{\mathfrak{H}}$. We proved some properties of class C(n) and we proved an asymmetric Putnam-Fuglede theorem for n-*-paranormal. Also, we study some invariants of Weyl type theorems. Moreover, we will prove that a class n-* paranormal operator is finite and it remains invariant under compact perturbation and some orthogonality results will be given.

Keywords

References

  1. P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer, 2004.
  2. P. Aiena, E. Aponte, and E. Bazan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), no. 1, 1-20. https://doi.org/10.1007/s00020-009-1738-2
  3. P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 791-807.
  4. P. Aiena and P. Pena, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), no. 1, 566-579. https://doi.org/10.1016/j.jmaa.2005.11.027
  5. M. Amouch and M. Berkani, on the property (gw), Mediterr. J. Math. 5 (2008), no. 3, 371-378. https://doi.org/10.1007/s00009-008-0156-z
  6. J. H. Anderson and C. Foias, Properties which normal operator share with normal derivation and related operators, Pacific J. Math. 61 (1975), no. 2, 313-325. https://doi.org/10.2140/pjm.1975.61.313
  7. S. C. Arora and J. K. Thukral, On a class of operators, Glas. Mat. Ser. III 21(41) (1986), no. 2, 381-386.
  8. A. Bachir and P. Pagacz, An asymmetric Putnam-Fuglede theorem for *-paranormal operators, arXiv:1405.4844v1 [math. FA] 19 May 2014.
  9. S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114. https://doi.org/10.1090/S0002-9939-1962-0133690-8
  10. M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), no. 2, 596-603. https://doi.org/10.1016/S0022-247X(02)00179-8
  11. M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1-2, 359-376.
  12. M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohem. 134 (2009), no. 4, 369-378.
  13. M. Cho and S. Ota, On n-paranormal operators, J. Math. Research 5 (2013), no. 2, 107-114.
  14. M. Cho and K. Tanahashi, On *-n-paranormal operators on Banach spaces, J. Math. Comput. Sci. 4 (2014), no. 1, 1-9. https://doi.org/10.9734/BJMCS/2014/6050
  15. L. A. Coburn, Weyl's theorem for non-normal operators, Michigan Math. J. 13 (1966), 285-288. https://doi.org/10.1307/mmj/1031732778
  16. R. E. Curto and Y. M. Han, Weyl's theorem, a-Weyl's theorem and local spectral theory, J. London Math. Soc. (2) 67 (2003), no. 2, 499-509. https://doi.org/10.1112/S0024610702004027
  17. B. P. Duggal, I. H. Jean, and I. H. Kim, On *-paranormal contraction and properties for *-class A operators, Linear Alg. Appl. 436 (2012), no. 5, 954-962. https://doi.org/10.1016/j.laa.2011.06.002
  18. D. A. Herrero, Approximation of Hilbert space operator. Vol. I, Pitnam Advanced publishing programm, Boston, London-Melbourne, 1982.
  19. H. Heuser, Functional Analysis, Dekker, New York, 1982.
  20. K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336. https://doi.org/10.2140/pjm.1992.152.323
  21. K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Oxford, Clarendon, 2000.
  22. S. Mecheri, Finite operator, Demonstratio Math. 35 (2002), no. 2, 357-366.
  23. V. Rakocevic, On a class of operators, Math. Vesnik 37 (1985), no. 4, 423-26.
  24. V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915-919.
  25. M. H. M. Rashid, Properties (B) and (gB) for Bounded Linear Operators, J. Math. 2013 (2013), Article ID 848176, 7 pages.
  26. M. H. M. Rashid, Property (m) for bounded linear operators, Jordan J. Math. Stat. (JJMS) 6 (2013), no. 2, 81-102.
  27. M. H. M. Rashid, Properties (S) and (gS) for Bounded Linear Operators, Filomat 28 (2014), no. 8, 16411652.
  28. M. H. M. Rashid, Properties (t) and (gt) for bounded linear operators, Mediterr. J. Math. 11 (2014), no. 2, 729-744. https://doi.org/10.1007/s00009-013-0313-x
  29. K. Tanahashi and A. Uchiyama, A note on *-paranormal operators and related classes of operators, Bull. Korean Math. Soc. 51 (2014), no. 2, 357-371. https://doi.org/10.4134/BKMS.2014.51.2.357
  30. J. P. Williams, Finite operators, Proc. Amer. Math. Soc. 26 (1970), 129-135. https://doi.org/10.1090/S0002-9939-1970-0264445-6
  31. J. Yuan and Z. Gao, Weyl spectrum of class A(n) and n-paranormal operators, Integral Equations Operator Theory 60 (2008), no. 2, 289-298. https://doi.org/10.1007/s00020-008-1556-y
  32. J. Yuan and G. Ji, On (n, k)-quasiparanormal operators, Studia Math. 209 (2012), no. 3, 289-301. https://doi.org/10.4064/sm209-3-6