References
- P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer, 2004.
- P. Aiena, E. Aponte, and E. Bazan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), no. 1, 1-20. https://doi.org/10.1007/s00020-009-1738-2
- P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 791-807.
- P. Aiena and P. Pena, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), no. 1, 566-579. https://doi.org/10.1016/j.jmaa.2005.11.027
- M. Amouch and M. Berkani, on the property (gw), Mediterr. J. Math. 5 (2008), no. 3, 371-378. https://doi.org/10.1007/s00009-008-0156-z
- J. H. Anderson and C. Foias, Properties which normal operator share with normal derivation and related operators, Pacific J. Math. 61 (1975), no. 2, 313-325. https://doi.org/10.2140/pjm.1975.61.313
- S. C. Arora and J. K. Thukral, On a class of operators, Glas. Mat. Ser. III 21(41) (1986), no. 2, 381-386.
- A. Bachir and P. Pagacz, An asymmetric Putnam-Fuglede theorem for *-paranormal operators, arXiv:1405.4844v1 [math. FA] 19 May 2014.
- S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114. https://doi.org/10.1090/S0002-9939-1962-0133690-8
- M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), no. 2, 596-603. https://doi.org/10.1016/S0022-247X(02)00179-8
- M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1-2, 359-376.
- M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohem. 134 (2009), no. 4, 369-378.
- M. Cho and S. Ota, On n-paranormal operators, J. Math. Research 5 (2013), no. 2, 107-114.
- M. Cho and K. Tanahashi, On *-n-paranormal operators on Banach spaces, J. Math. Comput. Sci. 4 (2014), no. 1, 1-9. https://doi.org/10.9734/BJMCS/2014/6050
- L. A. Coburn, Weyl's theorem for non-normal operators, Michigan Math. J. 13 (1966), 285-288. https://doi.org/10.1307/mmj/1031732778
- R. E. Curto and Y. M. Han, Weyl's theorem, a-Weyl's theorem and local spectral theory, J. London Math. Soc. (2) 67 (2003), no. 2, 499-509. https://doi.org/10.1112/S0024610702004027
- B. P. Duggal, I. H. Jean, and I. H. Kim, On *-paranormal contraction and properties for *-class A operators, Linear Alg. Appl. 436 (2012), no. 5, 954-962. https://doi.org/10.1016/j.laa.2011.06.002
- D. A. Herrero, Approximation of Hilbert space operator. Vol. I, Pitnam Advanced publishing programm, Boston, London-Melbourne, 1982.
- H. Heuser, Functional Analysis, Dekker, New York, 1982.
- K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336. https://doi.org/10.2140/pjm.1992.152.323
- K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Oxford, Clarendon, 2000.
- S. Mecheri, Finite operator, Demonstratio Math. 35 (2002), no. 2, 357-366.
- V. Rakocevic, On a class of operators, Math. Vesnik 37 (1985), no. 4, 423-26.
- V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915-919.
- M. H. M. Rashid, Properties (B) and (gB) for Bounded Linear Operators, J. Math. 2013 (2013), Article ID 848176, 7 pages.
- M. H. M. Rashid, Property (m) for bounded linear operators, Jordan J. Math. Stat. (JJMS) 6 (2013), no. 2, 81-102.
- M. H. M. Rashid, Properties (S) and (gS) for Bounded Linear Operators, Filomat 28 (2014), no. 8, 16411652.
- M. H. M. Rashid, Properties (t) and (gt) for bounded linear operators, Mediterr. J. Math. 11 (2014), no. 2, 729-744. https://doi.org/10.1007/s00009-013-0313-x
- K. Tanahashi and A. Uchiyama, A note on *-paranormal operators and related classes of operators, Bull. Korean Math. Soc. 51 (2014), no. 2, 357-371. https://doi.org/10.4134/BKMS.2014.51.2.357
- J. P. Williams, Finite operators, Proc. Amer. Math. Soc. 26 (1970), 129-135. https://doi.org/10.1090/S0002-9939-1970-0264445-6
- J. Yuan and Z. Gao, Weyl spectrum of class A(n) and n-paranormal operators, Integral Equations Operator Theory 60 (2008), no. 2, 289-298. https://doi.org/10.1007/s00020-008-1556-y
- J. Yuan and G. Ji, On (n, k)-quasiparanormal operators, Studia Math. 209 (2012), no. 3, 289-301. https://doi.org/10.4064/sm209-3-6